
 
 

 

Printed November 28, 2012 1 NSDN1000 

 

══════════════════════════════════════════════════════════════════ 

 NIRSPEC 
UCLA Astrophysics Program U.C. Berkeley W.M.Keck Observatory 
══════════════════════════════════════════════════════════════════ 
Tim Liu February 12, 1997 
 
 NIRSPEC Software Design Note 10.00 

Interface Between Echelle Format Simulator and NIRSPEC Server 
 
1 Introduction 
 
 The original purpose of Echelle Format Simulator (EFS) was to provide a graphical interface 
for positioning the Echelle mechanisms to give the desired wavelength coverage. It is agreed that 
EFS should also be able to perform as an independent graphical user-interface. Like quick-look, EFS 
will be coded in IDL widgets. To communicate with the rest of the NIRSPEC software system, 
mainly the NIRSPEC server which is programmed in C, an interface mechanism is developed and 
discussed in this document.  
 
2 Structure 
  
 NIRSPEC software is a client-server based system. Under the client-server architecture, 
multiple user-interface clients like GUIs, command line interfaces (CLIs), and quick-look tools can 
be executed concurrently and remotely. The clients communicate with the NIRSPEC server, which 
will run on a SUN workstation computer at the Observatory, via TCP/IP network. 
  
 In order for EFS to function efficiently, it is best to treat it as an independent client with a 
direct inter-process communication (IPC) capability with the server, instead of relying on the other 
client such as the GUI to route a message, though the latter method is simpler in implementation. 
 
 EFS will be programmed in IDL. There are several mechanisms for IDL-based programs to 
communicate with other software. We will use the IDL CALL_EXTERNAL function to interface 
EFS to NIRSPEC software, similar to the IDL-coded quick look program, CALL_EXTERNAL 
allows one to call external functions written in C from inside IDL programs and thus pass values 
between the two different software systems. To make this happen, an IDL asynchronous event loop 
is constructed and the external C functions are called by EFS using time interrupt. The external 
function routines must be compiled as a shareable object library in order for IDL to call. In addition, 
there should be a dedicated process sitting between EFS and the NIRSPEC server to handle the bi-
directional communications. This control program and the external functions library form a 
“gateway” to non-IDL software. Such an interface architecture is illustrated in Figure 1.   



 
 

 

Printed November 28, 2012 2 NSDN1000 

 

Nirspec
Server

RPC

socket

Echelle
Simulator

Gateway
Server

Gateway
Client

IDL call_external

 
Figure 1 Interface scheme between EFS and NIRSPEC server 

 
 As can be seen, the gateway program consists of a server part and a client part which 
communicate with each other via a UNIX socket. The gateway client contains routines to talk to the 
server. To EFS, these socket routines are external functions and are called through IDL 
CALL_EXTERNAL function. The main part of the gateway server is an asynchronous event loop 
which processes socket events from EFS and KTL events from the NIRSPEC server. The gateway 
server and the NIRSPEC server are interfaced using remote procedure call (RPC) mechanism. For 
clarity, the functions of the gateway server and client are listed below: 
 
Gateway server: 
 listen to requests from both ends (KTL events and socket events) 
 parse command/keyword strings from EFS and send to the NIRSPEC server 
 handle NIRSPEC server broadcasts using callbacks and pass to EFS    
 
Gateway client: 
 provide a socket channel which links both the gateway server and EFS via CALL_EXTERNAL 
 
 Such a communication scheme works as follows: when EFS sends a command/keyword to 
the NIRSPEC server, the command message is passed to the gateway client via an 
CALL_EXTERNAL function call and then to the gateway socket server which in turn parses it and 
sends to the NIRSPEC server using a ktl_write() call. On the other hand, when the NIRSPEC server 
broadcasts a keyword, the gateway server will send it to the socket client by invoking a callback 
function and the client will then pass the keyword to EFS via CALL_EXTERNAL.  



 
 

 

Printed November 28, 2012 3 NSDN1000 

 

 
3 Other Issues 
 
 For simplicity in implementation, a command/keyword message sent by EFS is encoded in 
such a way that each CALL_EXTERNAL function call sends a single command/keyword. To start 
an exposure, about a dozen keywords need to be sent out in 1 second or shorter period of time. This 
requires that the EFS event loop be capable of making CALL_EXTERNAL calls at 10 or 20 Hz. 
Test shows that this rate can be achieved without noticeable downgrading of IDL GUI performance 
like mouse movement. In fact, it is possible to implement a variable loop rate such that the normal 
rate is set to 5 Hz and will be changed to 20 Hz or even higher when an exposure is to start.     
 
 The EFS gateway is a stand-alone program and will be launched along with GUI, CLI, 
quick-look, and EFS from a shell program. 
 
 


