
Printed November 28, 2012 1 NSDN0701

444

NIRSPEC
UCLA Astrophysics Program U.C. Berkeley W.M.Keck Observatory
444
Tim Liu February 10, 1997

NIRSPEC Software Design Note 7.01
Command Line Interface

1 Introduction

The NIRSPEC software provides a command line driven user interface as well as the
graphical user interface (GUI), according to the requirement specifications. The main function of the
command line interface (CLI) is to provide the script capability, which is very useful for carrying out
repetitive observing sequences like making a mosaic. Common observing routines such as taking
dark frames can easily be constructed using the script tool and executed more efficiently. This
document outlines the design and prototyping of the NIRSPEC CLI.

2 Design Requirements and Structure

Briefly, the basic design requirements for CLI are:

! script capability with rich programming facilities
! script verification function
! simple command syntax for ease of use
! automatic conversion of NIRSPEC keywords into valid commands
! simple and modular interface to applications

The first three requirements are obvious for a sophisticated and also easy-to-use CLI. The
fourth feature allows one to program the keywords directly. The last requirement will make it easy
to “plug in” a different command interpreter if needed.

The heart of a CLI is the command interpreter (CI), or parser, which is responsible for syntax
check and error message report. Rather than writing our own CI from scratch, we’d like to build the
CLI using an existing command language tool. In fact, The Keck Software Coordination Committee
(SCC) has recommanded the use of Tcl (Tool Command Language), a popular scripting language
good for controlling and extending applications. As a public-domain program developed by John
Ousterhout from UC Berkeley, Tcl has a large user community. Its main features include:

! generic programming facilities like variables, conditionals, looping and procedures
! C shell-like command syntax
! easy to implement new commands

Printed November 28, 2012 2 NSDN0701

 Keyword Library

Command
 Loop

 NIRSPEC
 Keywords

Not Valid

User Input

 Built-In
Commands

Command
 Loop

Tcl

Parser

OK

Figure 1 CLI structure

! embeddable and simple API

One of the most useful extensions to Tcl is Tk, an X Window toolkit for quick GUI development,
though we’re not interested in it because we are using DataViews, a more sophisticated GUI builder
program.

The basic features provided by Tcl meet our requirements for the CI. Therefore, we’ve
decided to use it in our CLI implementation. Figure 1 is CLI structure diagram based on Tcl. One
can see that the Tcl based CLI is built on top of the keyword layer. Under this design structure, all
NIRSPEC commands go through the keyword layer since all the keywords are implemented as Tcl
commands.

3 Interface

The CLI is implemented as a stand-alone program and runs as a separate process from the
GUI. When the NIRSPEC program starts, it opens an xterm as the CLI window where the CLI
program is to be run. When the CLI command loop receives a typed-in command string, either a
single command or a script name, it passes it to the CI for parsing. If it’s an invalid command, an
error message will be generated. A Tcl built-in command will be processed by the CI. But for a
NIRSPEC keyword command, it will be sent to the GUI via inter-process communication (IPC).
When the GUI event loop receives the command string from CLI, it will handle in the same way as
a user input from the GUI. The received command will be converted into a keyword/value pair and
passed to the NIRSPEC server via RPC. The CLI-GUI interface is illustrated in Figure 2.

Printed November 28, 2012 3 NSDN0701

xnirspec

Server

CLI

RPC

socket

Figure 2 CLI-GUI interface

 Nirspec
Commands

 Tcl
Commands

Get Command String

Register New Commands

Create Interpreter

Evalute

Command Loop

New Command
Procedure

GUI
Event Loop

Socket

Figure 3 CLI Control Flow Diagram

Unix socket is used for IPC between the CLI and the GUI as seen from Figure 2. To have a
better understanding of how the CLI program is implemented, a control flow diagram is shown in
Figure 3. The source code for the command loop and parse is rather compact since one just needs
to call the Tcl C library routines to perform the task. But each NIRSPEC command (not built-in
commands) has to be defined in a new command procedure (it’s a C function) to make it valid. This
procedure calls a function routine to send out the command string to the GUI for action.

Printed November 28, 2012 4 NSDN0701

4 Utilities

A useful CLI should be able to check a script for syntax errors before execution.
Unfortunately, Tcl doesn’t provide such a function without executing the script. A script verification
utility should be developed. To be as simple as possible, the implementation idea is that the
“chkscript” command will “source” and execute the script. However, the NIRSPEC commands in
the script won’t be sent to the NIRSPEC server and therefore no real actions are taken.

Tcl doesn’t provide the command recall function either. Since command recall is a very
useful feature, we will implement it in the NIRSPEC CLI.

In addition, utilities equivalent to the Keck “show” and “waitfor” will also be implemented.

5 An Example Script

As an example, a dummy Tcl script file is created and listed below. Its function is to make
a 3 by 3 mosaic observing sequence. Note that ra and dec are dummy NIRSPEC telescope offset
commands via DCS.

#
NIRSPEC Tcl Script for a 3x3 mosaic
#
Arguments:
os_ra - offset (arcsecs) in ra direction
os_dec - offset (arcsecs) in dec direction
#
Usage:
% source mosaic.tcl
% mosaic os_ra os_dec
#
proc mosaic { os_ra os_dec } {
 puts [format "3x3 mosaic with offsets = %d, %d\n" $os_ra $os_dec]

 # loop
 set i 1
 while {$i <= 9} {
 # offset telescope
 if {$i != 1} {
 puts [format "Offsetting to frame #%d ..." $i]
 }

 if {$i == 2} {

Printed November 28, 2012 5 NSDN0701

 ra $os_ra
dec 0

 }
 elseif {$i == 3} {
 ra 0

dec $os_dec
 }
 elseif {$i == 4} {
 ra -{$os_ra}

dec 0
 }
 elseif {$i == 5} {
 ra -{$os_ra}

dec 0
 }
 elseif {$i == 6} {
 ra 0

dec -{$os_dec}
 }
 elseif {$i == 7} {
 ra 0

dec -{$os_dec}
 }
 elseif {$i == 8} {
 ra $os_ra
 dec 0
 }
 elseif {$i == 9} {
 ra $os_ra

dec 0
 }

 # start exposure
 go 1
 # wait until exposure is done
 waitfor go 0

 if {$i == 9} {
 puts "Back to frame #1 position ..."
 ra -{$os_ra}
 dec $os_dec
 }

Printed November 28, 2012 6 NSDN0701

 incr i
 }

 puts "Mosaic sequence is finished"
}

Using a script is like using a Tcl command, as seen from the comments in the above script.
But one has to “source” the script first. This can be done either interactively or from a login file.

