ÍÍÍ(�PRIVATE ��

	NIRSPEC

UCLA Astrophysics Program	U.C. Berkeley	W.M.Keck Observatory

ÍÍÍ(

Tim Liu	March 12, 1997

	NIRSPEC Software Programming Note 04.00

Echelle Format Simulator External Interface

1 Introduction

	This programming document describes the implementation of the Echelle Format Simulator (EFS) interface to the NIRSPEC server. As discussed in the design note NSDN1000 (Interface Between Echelle Format Simulator and NIRSPEC Server), the graphical user interface frond-end EFS will be implemented as a client program under the NIRSPEC client-server architecture. In order for this IDL widget based program to communicates with the server software which is coded in C, an inter-process communication (IPC) mechanism combining a UNIX socket and the IDL CALL_EXTERNAL function has been developed in NSDN1000. The reader should refer to NSPN1000 for details of the design.

2 Overview

	The EFS-server interface should be capable of handling a high volume of traffic, some of which may be mission-critical like aborting an exposure. Therefore, rather than routing messages through the GUI-server link, a direct communication channel is set up to ensure a fast response time, though the former technique is simpler. For the same reason, in contrast to other low traffic and less time-critical IPCs employed in the NIRSPEC software such as the GUI-QL link, the ESF-server interface implements a dedicated and stand-alone process in order to manage the bi-directional message flow more efficiently.

	The EFS-server communication routines are contained in three source modules: efs_gateway.c, efs_server.c, and efs_client.c. In addition, the low-level socket routines used in these source files are from socket.c which has been described in NSPN0200 (Programming Note on Command Line User Interface). These source files provide a gateway to the non-IDL server software for EFS. The following is brief descriptions of these modules:

	efs_gateway.c	- EFS gateway main program and related routines

	efs_server.c	- socket server routines used by the gateway program

	efs_client.c	- socket client routines called by IDL CALL_EXTERNAL function

	socket.c		- low-level socket routines

	All the source files are located in the NIRSPEC client software development directory /kroot/kui/xnirspec.

3 Program Description

3.1 efs_gateway.c

	When compiled, this module will run as a stand-alone process to handle the communication between the server and EFS. This gateway program contains the following routines:

void main(int argc, char *argv[])			- main program

void EFS_createInterest(KTL_HANDLE *ktl_handle) - set up keyword broadcast

void EFS_callback(char *keyword,

			 void *user_data,

 		 	 KTL_POLYMORPH *call_data,

			 KTL_CONTEXT *context)		- callback for keyword broadcast

void EFS_parse(int fd, char *cmd)			- parse command string from EFS

int lookup(char *keyword)				- look up KTL keyword table index

	The source file efs_gateway.c includes “ktl.h” and “nirspec.h” because several KTL routines and the NIRSPEC keyword table are used inside the program. In addition, the macros EXPRESS_INTEREST() and KTL_DISPATCH() are defined in the module for KTL function calls. These routines are described below:

1. The main function main() first checks command line arguments. For the moment, only the simulation switch “-s” can be supplied. Like other main functions in the NIRSPEC software, main() disables contrl-C to prevent accidental killing of the program. To communicate with the instrument server, the program makes a connection to the NIRSPEC keyword library by calling ktl_open(). Callbacks to respond to keyword changes from broadcasting are set up using EFS_createInterest(). The program then opens a socket channel to EFS with a 20 seconds time-out which allows the socket client enough time to open when EFS is launched.

	The core of main() is the event loop to process KTL RPC events and EFS socket events. Because the gateway program must be able to handle the two different file I/O sources, an asynchronous I/O multiplexing scheme is implemented for the event loop using the UNIX select() function call. select() examines an I/O file descriptor sets to see if any of the file descriptors are ready for reading, writing, or have an exceptional condition. A fd set consisting of the KTL fd and the EFS socket fd is created in the beginning of the loop as follows:

FD_ZERO(&readfds);

ktl_ioctl(khand, KTL_FDSET, &readfds);

FD_SET(efs_fd, &readfds);

The macro FD_ZERO() initializes a file descriptor set to the null set. Note that because the KTL call ktl_ioctl(,KTL_FDSET,,) automatically clears a fd set, it must be placed before the macro FD_SET(efs_fd, &readfds)which includes efs_fd in the read fd set readfds.

	The next code segment in the event loop is to block the process indefinitely until an EFS or KTL event arrives:

if ((select(maxfds, &readfds, NULL, NULL, NULL) == -1) && (errno != EINTR)) {

 perror("select() failed.");

}

else {

 /*

 * Get input from EFS

 */

 if (FD_ISSET(efs_fd, &readfds)) {

 if (EFS_serverIO(0, cmd) != -1)

 EFS_parse(efs_fd, cmd);

 }

 /*

 * Invoke KTL event handler

 */

 else

 KTL_DISPATCH(khand);

}

select() returns if either of the two fds is ready for reading. The program calls the macro FD_ISSET() to determine which fd is ready, and then invokes either EFS_serverIO() and EFS_parse() or KTL_DISPATCH() to perform the request operation.

	When main() exits, the socket channel to EFS and the RPC connection to the NIRSPEC server are closed with EFS_serverClose() and ktl_close().

2. When the gateway program receives a keyword which is sent from the NIRSPEC server via broadcast, a user-defined callback function will be invoked by KTL_DISPATCH() to send this keyword to EFS through the socket link. Whether the program should respond to a NIRSPEC keyword broadcast from the server is defined by EFS_createInterest() using the defined macro EXPRESS_INTEREST:

for (i = 0; i < NUM_KEYWORDS; i++) {

 EXPRESS_INTEREST(KeywordTable[i].keyword, EFS_callback);

}

where EFS_callback() is the callback routine. By definition, any keyword broadcast will invoke a callback in the gateway program that will forward this keyword to EFS.

	The callback function first determines a keyword index using lookup() which looks up the NIRSPEC keyword table and then constructs a keyword string as follows:

switch (KeywordTable[i].datatype) {

 case KTL_INT:

 case KTL_BOOLEAN:

 sprintf(str, "%s %d", keyword, call_data->i);

 break;

 case KTL_DOUBLE:

 sprintf(str, "%s %f", keyword, call_data->d);

 break;

 case KTL_STRING:

 sprintf(str, "%s %s", keyword, call_data->s);

 break;

}

The constructed string str is sent to EFS by:

EFS_serverIO(str);

3. On the other hand, when the gateway program receives a command string from EFS, it calls EFS_parse() to convert the string into a keyword/value pair and then send it to the NIRSPEC server. EFS_parse() first breaks the string into tokens separated by spaces using strtok(). The first token is the keyword:

keyword = strdup(strtok(cmd, " "));

The keyword value data comes from the second token (or the rest of the command string if the keyword has a string type):

switch (KeywordTable[i].datatype) {

 case KTL_INT:

 case KTL_BOOLEAN:

 strcpy(value, strtok(NULL, " "));

 if (value != NULL)

 data.i = atoi(value);

 break;

 case KTL_DOUBLE:

 strcpy(value, strtok(NULL, " "));

 if (value != NULL)

 data.d = atof(value);

 break;

 case KTL_STRING:

 str = strtok(NULL, "");

 if (str != NULL)

 strcpy(value, str);

 else

 *value = NULL;

	 data.s = strdup(value);

 break;

}

Finally, the keyword and its value are sent to the server via the RPC link using ktl_write(). A status message is replied to EFS using the socket I/O call EFS_serverIO().

3.2 efs_server.c

	This source file contains routines to provide server-side socket communications with EFS. These routines are similar to those in ql_server.c which has been described in NSPN0300 (Programming Note on Quick Look External Interface). The reader should consult with the design note for descriptions. In the future, efs_server.c and ql_server.c will be merged into a single source module.

3.3 efs_client.c

	There’re also many similarities between the socket client routines in efs_client.c and those in ql_client.c. Therefore, no separate description is given here. The reader should refer to NSPN0300 for discussion. Again, efs_client.c and ql_client.c will be combined into a single file.

4 Program Compiling

	All the source code in the NIRSPEC client software directory /kroot/kui/xnirspec is compiled using the make file makefile. The EFS gateway program executable efs_gateway is built from the three source files efs_gateway.c, efs_server.c, and socket.c as shown by the following lines in makefile:

CC	= cc

CFLAGS = -g -I$(INCLUDE) -I$(KROOT)/rel/default/include

NAMES2 = efs_gateway efs_server socket

SOURCE2 = $(NAMES2:%=%.c)

OBJECT2 = $(NAMES2:%=%.o)

LIBS3	 = -L$(KROOT)/rel/default/lib -lktl -lktlker -lkcl -ldl -lsocket \

	 -lucb -lm

TARGET = xnirspec cnirspec ql_client.so efs_gateway efs_client.so

all: $(TARGET)

Build EFS gateway program

efs_gateway: $(OBJECT2)

	$(CC) -o efs_gateway $(OBJECT2) $(LIBS3)

	The socket client routines in efs_client.c are built as a shareable object library named efs_client.so that can be invoked by the CALL_EXTERNAL call:

Build EFS socket client sharable object library

efs_client.so: efs_client.o

	ld -G -o $@ efs_client.o socket.o

5 Program Execution

	The NIRSPEC user interface client software starts by executing the shell script file xnirspec.sh in /kroot/kui/xnirspec. The stand-alone EFS gateway program efs_gateway is launched by the scrip as follows:

if (!($noefs)) then

 if (!($simulate)) then

 exec ./efs_gateway &

 else

 exec ./efs_gateway -s &

 endif

endif

where noefs and simulate are two flags passed from the xnirspec.sh command line. For example, the command entry “xnirspec.sh -noefs” will start the NIRSPEC client program without running EFS. Similarly, the switch “-s” indicates the simulation mode is activated.

	The socket server routines in efs_server.c are called by the EFS gateway program. For example, EFS establishes the socket connection when it starts:

if ((efs_fd = EFS_serverOpen(20)) < 0)

 ERROR(("Aborted: failed to open socket connection to EFS.\n"));

	The client routines contained in the shareable object efs_client.so are called from IDL programs using the CALL_EXTERNAL function. For example, the following IDL code opens a socket client by calling EFSCom_open():

inp = strarr(2)

inp(0) = ' '

inp(1) = ' '

status = call_external('/kroot/kui/xnirspec/efs_client.so','EFSCom_open', $

 inp, n_elements(inp), /f_value)

The string array inp contains parameters to be passed to the called function EFSCom_open(). The CALL_EXTERNAL function call returns the value status. A zero value indicates a success as defined in EFSCom_open(). The following IDL statements call the routine EFSCom_io() to read the socket channel:

inp = strarr(2)

inp(0) = '0'

inp(1) = ' '

msg = call_external('/kroot/kui/xnirspec/efs_client.so','EFSCom_io', $

 inp, n_elements(inp), /s_value)

If inp(0) = ‘1’, a socket write will be performed by EFSCom_io().

�

�

Printed �date \@ "MMMM d, yyyy"�March 13, 1997�	�page * arabic�7�	NSPN0400

