

Printed November 28, 2012 1 NSPN0200

══

 NIRSPEC
UCLA Astrophysics Program U.C. Berkeley W.M.Keck Observatory
══
Tim Liu February 20, 1997

 NIRSPEC Software Programming Note 02.00

Command Line User Interface

1 Introduction

 This document describes the implementation of the NIRSPEC command line interface
(CLI). The code structure and some programming issues are discussed in details. In addition, the
issues of program building and execution are addressed. All the CLI function routines are listed in
the end. The reader should refer to NSDN0701 for the CLI design outline before reading this
programming note.

2 Overview

 NSDN0701 provides an overview of the system requirements and structure for the CLI. To
recap, the key features of this interface program are:

 Tcl is used as the command interpreter
 most of the NIRSPEC keywords are defined as valid Tcl commands
 built as a stand-alone program, with a socket interface to the GUI
 provides non-Tcl functions such as script verification and command recall

2.1 Programming environment

 The CLI is programmed in ANSI C. The “Indian Hill” coding standards are adopted for
programming style, function and variable naming convention, and in-code documentation with some
Keck SCC amendments. SCCS is used for source code control and management. The source code
modules, makefile, compiled object files, and executable are located in the directory
/kroot/kui/xnirspec on the NIRSPEC development computer crab.astro.ucla.edu
under the user nirspec.

2.2 Source modules

 All the high-level function routines of the CLI program are in the source module cli.c.
Because the NIRSPEC GUI is interfaced with the CLI via a UNIX socket, the socket-based
communication interface routines used by the GUI program are provided by the source module

Printed November 28, 2012 2 NSPN0200

cli_server.c which is covered by NSPN0100 (Programming note on Graphical User Interface)
and therefore will be not discussed in this document. The low-level socket routines used by both the
CLI and the GUI are located in another source module socket.c. In addition, NIRSPEC
commands are defined by a keyword table in the header file nirspec.h which is included by most
of the NIRSPEC source file. Therefore, all the CLI code are found in these three source files which
are listed below:

 cli.c - CLI program
 socket.c - low-level socket routines
 nirspec.h - NIRSPEC header file that defines keywords, etc.

3 CLI Program

 This section describes the high-level source module cli.c. The two major routines
main() and Cmd_send()are discussed, while the other routines in the source file are self-
explanatory.

3.1 main()

 The main program has the following structure:

/* Include header files */
......

/* Declare static variables */
......

/* Declare private function prototypes */
......

main(int argc, char *argv[])
{

 /* Disable control-C */

 /* Set up error logging */

 /* Get socket name */

 /* Open CLI socket server */

Printed November 28, 2012 3 NSPN0200

 /* Create interpreter */

 /* Register commands */

 /* Event loop */
 while (!quit) {
 /* Get command line input */

 /* Evaluate command string */

 /* Script check */

 /* Print evaluation results */

 }
}

 Descriptions are as follows:

1. There are several special header files in addition to the standard UNIX include files listed in the
beginning of the code. <readline/readline.h> and <readline/history.h> are used
by the GNU readline library routines to implement the command recall function. <tcl.h> is
the standard Tcl include file. The header file “nirspec.h” contains the NIRSPEC keyword
definitions which are used by the CLI program. Below is a fragment of the keyword table structure
in nirspec.h:

typedef struct {
 char *keyword; /* NIRSPEC keyword name */
 KTL_DATATYPE datatype; /* keyword data type */
 char *initval; /* initial value */
 double minval; /* mininum value */
 double maxval; /* maximum value */
 int cli; /* valid Tcl command if TRUE */
 int argnum; /* # CLI command args; 0 = any */
 int cid; /* transputer command id */
 int broadcast; /* broadcast flag (TRUE or FALSE) */
 int rwflag; /* readable/writable flag */
} KEYWORD_TABLE;

static KEYWORD_TABLE KeywordTable[] = {
 "telescop", KTL_STRING, "Keck II", 0, 0,
 TRUE, 0, 0, TRUE, RDABLE | WRABLE,
 "observer", KTL_STRING, "UCLA IR Lab team", 0, 0,
 TRUE, 0, 0, TRUE, RDABLE | WRABLE,

Printed November 28, 2012 4 NSPN0200

If the flag cli is TRUE, the corresponding keyword will be defined as a Tcl command. The
number of arguments, separated by white spaces, followed by a Tcl command is determined by the
integer argnum. For a command argument of a character string, set argnum to 0.

2. The two static integer variables server_fd and client_fd are socket file descriptors used
in socket communication. The integer ScriptCheck is a flag. A TRUE value indicates the script
verification mode is activated.

3. The private function prototype declaration block lists the function routines used in this source
module. By our convention, public function prototypes are normally declared in a header file.

4. Control-C is disabled to prevent accidental killing of the program.

5. The CLI program uses syslog() to log error messages to both the system console and the log
file /var/log/nirspec.log. This is set by the configuration file /etc/syslog.conf.
openlog() is called in the beginning of the main program to open the log file.

6. The CLI and the GUI exchange information via a socket which resides in the memory-based
directory /tmp. The name of the socket is supplied from the command line argument in main().
Note that because multiple copies of the user interface program are allowed to run in a computer
under the NIRSPEC client/server architecture and more than one socket may be created, a fixed
socket name is apparently not sufficient. The allocation of sockets is managed by the GUI because it
is the GUI that launches the CLI program and passes the socket name to it.

7. Create the Tcl command interpreter with the function Tcl_CreateInterp(). The new
interpreter contains all of the built-in Tcl commands. Then register user-defined new commands.
The registration process loops through all the keywords in the KeywordTable structure and
register those flagged in the cli field, as shown below:

for (i = 0; i < NUM_KEYWORDS; i++)
 if (KeywordTable[i].cli)
 Cmd_register(interp, KeywordTable[i].keyword);

Several special new commands are also defined:

Cmd_register(interp, "chkscript");
Cmd_register(interp, "help");
Cmd_register(interp, "read");
Cmd_register(interp, "waitfor");

Printed November 28, 2012 5 NSPN0200

The function Cmd_register() invokes the Tcl routine Tcl_CreateCommand() which
contains the function Cmd_proc() as a function argument. Cmd_proc() calls Cmd_send() to
perform the command check and conversion, and then send the constructed new command string to
the GUI which in turn send it to the NIRSPEC server for execution. The routine Cmd_send() will
be discussed in some details later.

8. The heart of the main() is a loop which takes a typed-in string from the command prompt,
parses it, and prints the evaluation result. The first part of the loop code is command entry. To
provide the command recall function, the GNU readline library routines are used to handle the
command input as shown below:

if ((cline = strdup(readline(prompt))) != NULL) {
 s = stripwhite(cline);
 if (s[0] != '\0')
 add_history(cline);
 strcpy(cmd_str, cline);
 free(cline);
}

readline() takes the input command string cline, the function stripwhite() strips white
spaces from the start and end of the string, and add_history() puts the command string onto the
command history stack.

 The next block of the code deals with command parsing. To prevent an accidental exit from
Tcl, the Tcl command exit is disabled by not going through the command evaluation. If the
input command cmd is not chkscript, the program will simply call Tcl_Eval() to evaluate
the command string cmd_str as shown below:

if (strcasecmp(cmd, "chkscript") != 0)
 code = Tcl_Eval(interp, cmd_str);

However, if the input command is chkscript, the flag ScriptCheck will be set to TRUE to
indicate the script check mode. The script file is then checked for existence. Because a script
execution is invoked by the procedure name defined in the script file which may not be the same as
the script file name, the following code fragment scans through a script file and extracts the
procedure name proc_name:

proc_name_found = FALSE;
while (fgets(line, 80, fd) != NULL) {
 if (line[0] == '#')
 continue;
 i = sscanf(line, "%s %s", proc_cmd, proc_name);
 if (i == EOF || i == 0)
 continue;
 if (i == 2 && strcasecmp(proc_cmd, "proc") == 0) {

Printed November 28, 2012 6 NSPN0200

 proc_name_found = TRUE;
 break;
 }
}

Note that a script must be “sourced” before execution and this is done by the following code:

sprintf(cmd_str3, "source %s", val);
code = Tcl_Eval(interp, cmd_str3);

where val is the script file name. Then the script evaluation is carried out such that

if (code == TCL_OK)
 code = Tcl_Eval(interp, proc_name);

As will be discussed in the next section, the NIRSPEC commands in a script are only evaluated, but
not sent to the server for execution. Therefore, no real actions are taken when one runs chkscript
to verify a script for syntax check.

 A message generated by Tcl or the user code is in the pointer *interp->result and
printed out by the following code:

if (*interp->result != 0)
 fprintf(stdout, "%s\n", interp->result);

3.2 Cmd_send()

 The function of Cmd_send() is to convert a Tcl-registered NIRSPEC command into a
keyword, check the number of arguments and the value range, construct a special command string,
and then send it to the GUI for further processing. The major code blocks are explained in this
section.

1. The first part of the routine is to process the special non-keyword commands as listed below:

if (strcasecmp(argv[0], "help") == 0) {
 help();
 return TCL_OK;
}
else if (strcasecmp(argv[0], "waitfor") == 0) {
 if (argc != 3) {
 strcpy(result, "Error: wrong # args");
 return TCL_ERROR;
 }
 else {
 wait = TRUE;
 keyword = strdup(argv[1]);

Printed November 28, 2012 7 NSPN0200

 }
}
else if (strcasecmp(argv[0], "read") == 0) {
 if (argc != 2) {
 strcpy(result, "Error: wrong # args");
 return TCL_ERROR;
 }
 else {
 read = TRUE;
 keyword = strdup(argv[1]);
 }
}
else
 keyword = strdup(argv[0]);

As can be seen, the command help will call the function help() to display all the valid
NIRSPEC commands and then return. The command waitfor requires two arguments, e.g.,
“waitfor go 0”. It sets the wait flag and takes the keyword string from the command
arguments. Similarly, the special command read will set the read flag and obtain keyword.
Except for these special commands, the keyword string is taken from the command name.

2. The next step is to get the keyword index using the lookup() routine

if ((i = lookup(keyword)) < 0) {
 strcpy(result, "Error: invalid command/keyword");
 return TCL_ERROR;
}

and check the number of keyword arguments and the keyword value range. However, this check is
required only if the field argnum in the KeywordTable structure is greater than 0 (usually means
the argument is a string) and if the command is neither read or waitfor, as shown by the
following code fragment:

if ((KeywordTable[i].argnum > 0) && !read && !wait) {
 if (argc != (KeywordTable[i].argnum + 1)) {
 strcpy(result, "Error: wrong # args");
 return TCL_ERROR;
 }

 if (KeywordTable[i].datatype != KTL_STRING) {
 value = atof(argv[1]);
 if (value < KeywordTable[i].minval ||
 value > KeywordTable[i].maxval) {
 strcpy(result, "Error: value is out of range");
 return TCL_ERROR;
 }
 }
}

Printed November 28, 2012 8 NSPN0200

The Cmd_send() routine returns when an error occurs.

3. If the script check mode is activated (ScriptCheck is TRUE), the function will simply return
here:

if (ScriptCheck)
 return TCL_OK;

4. The next code block is to construct a special command string that will be sent to the GUI:

if (wait) {
 sprintf(cmd, "wait %s", argv[1]);
 for (i = 2; argv[i] != NULL; i++) {
 strcat(cmd, " ");
 strcat(cmd, argv[i]);
 }
}
else if (read)
 sprintf(cmd, "read %s", argv[1]);
else {
 sprintf(cmd, "write %s", argv[0]);
 for (i = 1; argv[i] != NULL; i++) {
 strcat(cmd, " ");
 strcat(cmd, argv[i]);
 }
}

The command string has a syntax such that “[read|wait|write] {keyword} {value}”.
For example:

 read coadds
 wait go 0
 write itime 10

5. Finally, Cmd_send() sends the constructed command string to the client side of the socket with
the following code:

if (send(client_fd, cmd, strlen(cmd)+1, 0) == -1) {
 perror("send()");
 strcpy(result, "Error: failed to send the command out");
 return TCL_ERROR;
}
else {
 if (recv(client_fd, reply, sizeof(reply), 0) != -1)
 strcpy(result, reply);

 return TCL_OK;

Printed November 28, 2012 9 NSPN0200

}

If the string is sent successfully, the routine will wait for a reply before it returns.

4 Low Level Socket Routines

 The low level generic socket function routines used in cli.c and cli_server.c are
contained in the source file socket.c. These routines are straightforward in programming, and
therefore only a brief discussion is given here.

1. socket_create() creates a socket name. The location of a socket is determined by the
environment variable NIRSPEC_SOCKET_DIR in the NIRSPEC client software initialization file
NirspecClientInit. Because multiple copies of the NIRSPEC client program may be running
in a computer, a socket is created dynamically with a sequential number as shown below:

for (i = 1; i < 100; i++) {
 sprintf(socket_name, "%s/%s%d", dir, prefix, i);
 if (access(socket_name, F_OK) != 0)
 break;
}

A function call like socket_create(“nirspec_cli_socket”, socket_name) may
create the socket nirspec_cli_socket5 if the sequence number 1 through 4 are already used
for other existing sockets.

2. socket_serverOpen() has a time-out argument to set a time limit in establishing a socket
connection. This time-out function is implemented as follows:

if ((pid = fork()) == 0) {
 ppid = getppid();
 sleep(timeout);
 kill(ppid, SIGKILL);
}
else {
 *client_fd = accept(*server_fd, client_sock_address_ptr, &client_len);
 kill(pid, SIGKILL);
 return 0;
}

The routine forks a child process which acts as a timer. If the given time value expires before the
timer is stopped by the parent process, the child process will kill its parent and subsequently stop the
socket opening.

5 Building the Program

Printed November 28, 2012 10 NSPN0200

 The NIRSPEC user interface programs including CLI and GUI are built with the make file
makefile in the source code directory /kroot/kui/xnirspec. Listed below is a part of the
make file that builds the CLI program executable cnirspec:

INCLUDE = /usr/local/dv/include
CC = cc
CFLAGS = -g -I$(INCLUDE) -I$(KROOT)/rel/default/include
LIBS2 = -ltcl7.5 -lsocket -lm -ldl -lnsl -lreadline -ltermcap

cnirspec: cli.o socket.o
 $(CC) -o cnirspec cli.o socket.o $(LIBS2)

6 Running the Program

 Although the CLI is a stand-alone program, it is actually launched by the GUI because time
coordination is required between the two user interface programs to set up the socket channel. When
the GUI program starts, it invokes the GUI-CLI socket interface routine CLI_serverOpen() to
create a socket and run the CLI program in an xterm window. The fragment of the code that starts
the CLI is shown below:

sprintf(cmd, "xterm -132 -geometry 69x3+0-7 -fg white -bg black \
 -title \"XNIRSPEC 1.1 - Command Line (%s@%s)\" \
 -cr white -ms gray -fn 8x13 -fb 8x13bold -sb -sk -ls \
 -e cnirspec %s &", user, host, SocketName);
system(cmd);

The first statement creates a system command that sets up an xterm window and specifies
cnirspec to be run in the window. This shell command is then invoked from a system() call.

7 List of Function Routines

Functions in the source module cli.c:

main() - main program
Cmd_register() - register a new command
Cmd_proc() - command procedure for a new command
Cmd_send() - check, convert and send a command string
help() - list commands
lookup() - look up NIRSPEC keyword table index
stripwhite() - strip white spaces from the start and end of a string

Functions in the source module socket.c:

Printed November 28, 2012 11 NSPN0200

socket_create() - create a socket
socket_delete() - delete a socket
socket_clientOpen() - open socket client
socket_clientClose() - close socket client
socket_serverOpen() - open socket server
socket_serverClose() - close socket server
socket_read() - read a string from socket
socket_write() - write a string to socket

