
Printed November 28, 2012 1 NSPN33.00

NIRSPEC
UCLA Astrophysics Program U.C. Berkeley W.M.Keck Observatory

George Brims Revised January 14, 1999

NIRSPEC Software Programming Note 33.00
The data acquisition process

1 Introduction

The acquisition of data from the IR arrays in NIRSPEC is a complex process, involving interactions
between transputer boards of two different types, the analog hardware, and the array itself. The two
types of transputer boards and their programs are described much more fully elsewhere (NEAN04
& 05 for the hardware and NSPN18 & 19 for the programs), but this note describes the whole
process so that the interactions and dependencies can be understood.

2 Hardware description

The essential features of the hardware are described in this section, though only as far as needed to
understand the software.

2.1 Clock generator boards (DAQ17)

The T805 transputer on each DAQ17 board sees the outside world as a selection of registers where
output data are loaded and input data read back.

Clock waveforms are generated by writing a series of 32-bit words to a parallel output-only port.
There are two registers feeding data to the physical port, as well as various control registers.

Most of the clock pattern is sent out through a register which feeds a first-in-first-out (FIFO) buffer,
32 bits wide by 16384 deep. The transputer loads a sub-section of the waveform into the FIFO
register and a repeat count into another register, then writes to a control register to command the
hardware to send the data out. This scheme takes advantage of the repetitive nature of the patterns
required by the IR arrays to simplify programming. The timing of the clock output is set completely
by hardware, and can be much faster than the transputer itself can generate, as long as the waveform
is composed and loaded into the FIFO buffer in advance.

As well as the repeated part, the arrays always require some clock pulses at the start of the waveform,
and sometimes a sequence at the end. In this case output is sent word by word through the other
register that feeds the same physical connectors. The start and end sequences are usually short and
don't need to be very fast, so it doesn't matter that writing out this way is a bit slower (approx 320ns
per time interval rather than 200ns through the FIFO buffer).

Printed November 28, 2012 2 NSPN33.00

Most lines of the waveform go from the board’s front panel connectors to the level shifter board,
with two exceptions. Two lines are split off to a pair of BNC connectors and fed to the interface
board in the analog crate. These are the convert signal for the A-D converters, and the select
signal. There are two A-Ds on each analog board, but just one output connector. select (a level
rather than a pulse) determines which A-D output is seen at the connector. Eight of the clock output
lines are also copied to pins on the VME bus connector. We use one to send the read.data clock
pulse to the acquisition boards, which tells them to read in the next set of pixel values from the A-
Ds.

The DAQ17 boards also have four other (bi-directional) ports, most often used for driving motors
and reading limit switches. When we use the boards for clocking arrays we use one of these ports
to send data to serial D-A converters in the analog hardware (they set analog offset voltages for the
pre-amps and control the detector bias for the Aladdin array), and another port to control the
selectable gain and filter bandwidth on the analog boards (there are 4 choices for each, so we use 4
bits in total). These settings aren't changed during an integration so they don't enter into the
discussion to follow.

2.2 Data acquisition boards (DAQ15)

The acquisition boards also use FIFO buffers mapped to registers, this time to take in data from the
outside world. Each DAQ15 board has four T805 transputers. Each reads its data from a 512 deep
FIFO. A pulse on the read.data line from the clock waveform triggers the reading of data into
the FIFO. The FIFO's “half full” signal is fed to the transputer so as to trigger an interrupt. Each time
there are 256 or more pixels in the FIFO, the transputer will read in 256 data words.

2.3 Pre-amp & A-D boards

These boards have two analog channels feeding two 16-bit A-D converters. When the A-Ds see the
convert pulse from the clock generator they digitize the analog signal. The two digital data are
sent through a multiplexer circuit to the front panel connector. The choice of which one is fed out
at any given time is determined by whether the select signal from the clock generator is high or
low.

2.4 Interface board

In order to isolate the digital and analog sections of the electronics and cut down on noise, the digital
control signals (convert, select and the bits controlling gain and bandwidth) are passed through
Burr-Brown ISO150 capacitive isolator chips on the interface board, which then feeds the signals
along the analog system backplane to the pre-amp/A-D boards.

Printed November 28, 2012 3 NSPN33.00

Figure 1: Transputer network

2.5 Bias board

The bias board generates the various voltages needed to power the IR array in each camera. It has
serial D-A converters which set the pre-amp offset levels, and in the case of the 10242 Aladdin
detector, another one to control the detector bias. These voltages are never changed during an
integration.

2.6 Level shifter board

This board converts the output pulses from the clock generator to the appropriate voltage levels for
the IR array detectors, which are quite different for the two types we use.

2.7 Interconnections

2.7.1 Transputer serial links

Each camera section of the instrument has one DAQ17 clock generator board. The slit-viewing
camera uses two of the four transputers on a single DAQ15 acquisition board, while the spectrometer
camera uses four DAQ15 boards for a total of 16 acquisition transputers. Each clock generator
transputer has one serial link to the root transputer, which passes it commands from the host. The
acquisition transputers are joined in a daisy-chain, each end of which has a link to the clock
generator transputer.

Printed November 28, 2012 4 NSPN33.00

2.7.2 Clock signals

The clock signals go from the clock generator front panel to the level shifter, except for the
convert and select lines, which go via the interface board to the pre-amp/A-D boards, and the
read.data line which goes along the digital backplane to the acquisition boards. Level-shifted
clock pulses go from each level shifter to the array.

2.7.3 Control signals

The serial data controlling the D-A converters for analog offset and detector bias go from one
DAQ17 I/O port to the bias board, and the 4 bits controlling analog gain and bandwidth go from
another DAQ17 I/O port to the interface board.

Printed November 28, 2012 5 NSPN33.00

3 Acquisition sequence

3.1 Introduction

Now that I've given you some (probably too much) background on the hardware, it's time to describe
what happens when we take a frame.

The most important interaction in the whole system is the one that gets data into the DAQ15 boards.
The clock waveform includes pulses sent to the acquisition transputers on their read.data lines,
feeding pixel values into the input FIFO buffers. The acquisition transputers read in data whenever
there are enough pixel values in their FIFO buffers. The acquisition transputer has no idea when
these pixel values will appear, but just reads until it has the right number of pixels in memory. In
fact, the analog hardware doesn’t even need to be switched on for this process to work.

I will describe what happens on the spectrometer camera, but the process is almost identical on the
SCAM side (I will mention the few simple exceptions). Wherever I mention a variable name in the
spectrometer side containing the character sequence .spec, the SCAM variable will be the same
with .scam instead. (Note that the use of dots in variable names in occam has nothing to do with
structures as they would in C. We simply use them as separators when stringing words or phrases
together to make a meaningful variable name.)

A word about the structure of the two types of program, clock generator and acquisition: both are
single process programs. There is no parallel processing going on within any one processor. The
parallelism here is in the programs running simultaneously on the different transputers and
interacting with each other via messages over the serial links and interactions with the hardware.

3.2 Setup

Before we take a frame there are a number of parameters which may need to be set (though the host
software sends a set of default values when it first runs). These are integration time, sampling mode
(single sampling, double correlated sampling or multiple correlated sampling), number of co-adds,
and sample rate (how fast we take pixels). For multiple correlated sampling the transputers also need
to know the required number of samples. Each parameter has a keyword in the host code, and is sent
to the transputers as a command identifier (cid) with its associated parameter value (param).
Messages consisting of cid/param pairs are sent to select the values for the next frame. In most
cases this just results in a value being changed, and used once the integration starts. One special case
is the sample rate. If the rate is changed the clock program immediately calls its routine makewave
to re-generate the stored waveforms, since the output rate is changed by making the waveform longer
or shorter.

Printed November 28, 2012 6 NSPN33.00

3.3 Taking a frame

Taking a frame is triggered by the host computer sending a message with command identifier
go.spec (or go.scam). When the clock generator gets this command, it sets a couple of values
(coadd.num = 0 and not.abort = TRUE), then passes the command on to the first acquisition
transputer, which passes it on down the chain of acquisition transputers to the last one.

The clock generator and acquisition transputers then both do a CASE on the value of sampmode,
and go into the appropriate code. In the clock generator there is a 60-80 line section of inline code
for each of the three modes, but in the acquisition transputers the code is huge so it's been split off
into subroutines. Although there are 3 observing modes there are only two data-taking routines: one
for single sampling (ssample) and one to handle both double correlated and multiple correlated
sampling (dcorrsample). These two modes are the same except for the number of samples per
read, 1 for DCS or more than 1 for MCDS.

In each type of sampling there is a period during each co-add when the clock generator is idle,
waiting for the integration time to expire. During this period it is also open to receiving messages
from the host. Only one command identifier will have any effect — the abort message — while
anything else is read and discarded. If the abort message is received it is passed to the acquisition
transputers, which then discard their data and abandon the observation too.

I will describe each data-taking mode separately. Each mode is a little more complex than the last
so it's probably a good idea to read them in order.

3.4 Single sampling

On entering the code section for single sampling, the clock generator enters a WHILE loop, which
it will execute once for each co-add, incrementing coadd.num each time. There are two ways for
the program to exit this loop. The usual way is for it to complete the requested number of co-adds
(coadds.spec) and end the observation. Occasionally it will exit because the flag not.abort
has been set false by an abort message from the host.

In the acquisition transputers, routine ssample clears the data buffer frame and the FIFO
hardware buffer, and sets the flag coadding to TRUE, before entering a WHILE loop on flag
coadding. This loop will also normally be executed once per co-add. The two reasons for
coadding becoming FALSE, forcing an exit from the loop are again that the requested number of
co-adds is done, or the host has requested an abort. The loop starts with a message input from the
clock generator. There are three possible commands; take another coadd, abort the frame, or
complete the frame. The acquisition transputer has no advance knowledge of the number of coadds
it will do, and in fact it doesn't even keep track of how many it has done.

Printed November 28, 2012 7 NSPN33.00

3.4.1 Normal completion

Each time it starts its co-adding loop, the clock generator sends a message to the acquisition
transputers, with command identifier cid.daq.integ.start.spec. This is the command that
tells the acquisition transputers that another co-add is to start, so they should expect data.

The acquisition transputers are waiting at the top of their loop for any incoming message. When a
message arrives, each one passes it on to the next, then parses the command with a CASE statement.
If the command is cid.daq.integ.start.spec, it then goes into an enumerated loop where
it sets up an interrupt on the half full flag of the FIFO input buffer. This interrupt will go off once
data starts to arrive.

Once the integ.start command has passed from the last acquisition transputer to the clock
generator, the clock generator now knows that all the acquisition transputers are ready for data, so
it can start the co-add. It takes a time-stamp from the on-chip clock, and clears the detector array
using routine global.reset (reset on the SCAM). It then waits for the integration time to
expire. Since during the integration time the clock generator is sitting idle, it is here we allow
messages from the host to interrupt the flow. We use the Occam ALT construct to handle this
situation. The ALT allows the clock generator to sit idle and wait for input from either the time
expiring or a message arriving. (We will talk about what happens when a message arrives in the next
subsection).

Once the integration time expires, the clock generator calls routine clockwave to generate the
readout clock pattern. This clocks through the array, selecting the pixels in sequence, and latches a
stream of pixels into the acquisition transputers’ FIFO input buffers. Finally it increments the counter
coadd.num.

The acquisition transputers are waiting for these pixels to arrive. Every time the input buffers reach
half full the acquisition transputers are interrupted (the line event ? event.byte), then read
in data. After each block of 256 pixels is read, each transputer goes through a long sequence of lines
to co-add these new values into the buffer, then goes back to the top of the enumerated loop. It will
execute this loop 256 times (128 times for the SCAM), so each acquisition transputer buffers 65536
pixels (32768 on the SCAM). The acquisition transputers then go back to the top of their WHILE
coadding loop and wait for another command.

This whole sequence will repeat until the clock generator has counted up the right number of co-adds
(coadd.num equals coadd.spec). It then exits its co-adding loop. Once out of the loop it checks
whether not.abort is true. If it is, meaning the coadd loop ended normally, it sends command
cid.daq.integ.end.spec to the acquisition transputers and waits for it to be passed back.

On receiving this integ.end command, each acquisition transputer passes it on to the next, and
so back to the clock generator. Once the clock generator gets this acknowledgment it has completed

Printed November 28, 2012 8 NSPN33.00

all it will do for this frame, and goes back to its main program section where it idles waiting for
messages from the host or messages or data from the acquisition transputers.

After passing on the integ.end command, each acquisition transputer sets coadding to FALSE,
which will end the loop once it gets back to the WHILE at the top. First though, the data have to be
sent to the host. Each acquisition transputer has a unique number, tnum, which is downloaded to
it from the host at run time, so it knows where it is in the chain. The first acquisition transputer has
a tnum of zero, and so on up to 15 (just 0 or 1 in the SCAM), The first one sends a message with
command identifier cid.frame.ready.spec to the clock generator, which passes it back to the
host computer to alert it that data are on the way. The first acquisition transputer then sends its data
to the clock generator, which then passes it back to the host. It then enters a loop where it will take
in the data blocks from the other 15 acquisition transputers and pass them along. It knows from the
value of tnum how many times it will have to do this. The next one along has a tnum of 1, so it will
send its own data, then pass along only 14 blocks from the others, and so on down the line to the last
one, which sends its own data, but doesn't have to pass along any.

Having sent back their data, the acquisition transputers too can go back to their main program loop
where they wait for further commands.

3.4.2 Abort

If the host sends an abort command during an integration, it will be received by the clock generator
during the idle period of the integration between resetting the array and clocking out the data. If that
happens, the clock generator has to do a couple of things. It can't just pass the message straight on
to the acquisition transputers, since at this point they are waiting for incoming data, so first it clocks
the array so that the acquisition transputers will complete the current co-add and go back to listening
for messages. It doesn't matter that this is happening before the end of the allotted integration time,
since the data will be trashed anyway. It then sets the flag not.abort to FALSE, so it will exit its
own loop, then acknowledges the abort message with an echo to the host. Once it has exited the co-
adding loop, it checks the value of not.abort. If it's false then it passes the message along to the
acquisition transputers and waits for the acknowledgment that they have all received it.

When the acquisition transputers get the abort message, each passes the message along to the next,
then sets flag coadding to false. This will cause it to drop out of its co-adding loop without ever
sending the data back. The data are effectively discarded since the frame buffer is cleared at the start
of the next observation.

Printed November 28, 2012 9 NSPN33.00

Clock generator code for a single sampling frame

 cid.go.spec -- take an observation
 SEQ
 coadd.num := 0
 not.abort := TRUE
 to.daq ! msg; cid; param -- pass the cid.go command to the acquisition transputers
 CASE sampmode -- which sampling mode is to be used for this observation?

 single.samp -- single sample mode (reset, wait integration time, read)
 SEQ
 WHILE ((coadd.num < coadds.spec) AND not.abort) -- loop through requested number of coadds
 SEQ
 to.daq ! msg; cid.daq.integ.start.spec; param -- tells daqs to start this coadd
 loop.back ? CASE -- waiting for DAQ ready signal (echos integ.start)
 msg; cid; param
 SKIP
 clock ? time.now -- store current time
 global.reset () -- reset the array
 loadwave (read) -- load up fifo with read frame for end of itime
 ALT -- now wait for end of integration *or* abort message

 clock ? AFTER time.now PLUS itime.spec.ticks -- itime has elapsed
 SEQ
 clockwave (read) -- read out the array
 coadd.num := coadd.num + 1 -- keep a count of coadds

 from.root ? CASE -- received command from root
 msg; cid; param
 SEQ
 CASE cid -- check the command
 cid.abort.spec -- command is abort without saving data
 SEQ
 clockwave (read) -- clock the array so acquisition boards don't hang up
 coadd.num := coadd.num + 1
 not.abort := FALSE -- FALSE means we will fall out of the coadding loop
 to.root ! msg; cid.abort.spec ; spec -- acknowledge
 ELSE
 SKIP
 IF
 not.abort
 SEQ
 to.daq ! msg; cid.daq.integ.end.spec ; 0
 loop.back ? CASE -- receives the echo of the cid from the last DAQ
 msg; cid; param
 SKIP
 TRUE
 SEQ
 to.daq ! msg; cid.abort.spec ; 0 -- daqs will discard data when they see this
 loop.back ? CASE -- receives the echo of the cid from the last DAQ
 msg; cid; param
 SKIP

Printed November 28, 2012 10 NSPN33.00

Acquisition code for a single sampling frame

 PROC ssample (VAL INT tnum, CHAN OF TRANS2TRANS up, down, in, out)
 --
 -- s s a m p l e We use this procedure to take data in single-sampling mode, with co-adding
 -- if required.
 --
 BYTE cid :
 INT param :
 INT index :
 INT result :
 BOOL coadding :
 BYTE event.byte :
 INT should.be :
 SEQ
 SEQ i = 0 FOR 65536
 frame[i] := 0 -- first clear the data array
 FifoRst := 0 -- clear the FIFO incoming data buffer
 coadding := TRUE
 WHILE coadding -- loop until coadding is set to FALSE
 SEQ
 up ? CASE -- wait for a message from the clock...
 msg; cid; param
 SEQ
 down ! msg; cid; param -- ...and pass it on down the line
 CASE cid -- check the message content
 cid.daq.integ.start.spec -- message is start of a coadd
 SEQ
 index := 0 -- init pointer into data buffer
 SEQ i = 0 FOR 256 -- take in our piece of the frame in 256 blocks
 SEQ
 subframe IS [frame FROM index FOR 256] : -- define block in frame array
 SEQ
 int.enable := half.full -- we will interrupt on half full flag of FIFO
 master := master.int.en -- enable interrupts
 event ? event.byte -- wait for interrupt event
 result := int.poll /\ half.full -- mask half full bit in interrupt result reg.
 should.be := half.full
 IF
 result <> should.be -- check interupt really was half full
 CAUSEERROR() -- if not it's a fatal problem, bomb out
 TRUE
 SKIP -- otherwise we're fine, go on and read in data
 int.enable := 0 -- turn off interrupts
 [dma FROM 0 FOR 256] := [FifoRdLo16 FROM 0 FOR 256] -- DMA in the block of data
 subframe[0] := subframe[0] + dma[0] -- coadd most recent data values into buffer
 subframe[1] := subframe[1] + dma[1] -- we do it longhand like this for speed
 subframe[2] := subframe[2] + dma[2]
 subframe[3] := subframe[3] + dma[3]
 :
 :
 subframe[253] := subframe[253] + dma[253]
 subframe[254] := subframe[254] + dma[254]
 subframe[255] := subframe[255] + dma[255]
 index := index + 256
 FifoRst := 0 -- empty the FIFO at the end of the frame

 cid.abort.spec -- command is to abort integration
 SEQ
 coadding := FALSE -- this will drop us out of "WHILE coadding" loop

 cid.daq.integ.end.spec -- command is end of integration
 SEQ
 coadding := FALSE -- this will drop us out of "WHILE coadding" loop
 IF
 tnum = 0 -- first transputer only, send "frame ready" to root
 SEQ
 out ! msg; cid.frame.ready.spec; spec
 TRUE
 SKIP
 out ! data; tnum; 65536::frame -- send out frame data
 SEQ i = 0 FOR (15 - tnum) -- pass on data from all the downstream processors
 SEQ
 in ? CASE
 data; tid; frame.size::frame
 out ! data; tid; frame.size::frame
 :

Printed November 28, 2012 11 NSPN33.00

3.5 Double correlated sampling

On entering the code section for double correlated sampling, the clock generator enters a WHILE
loop, which it will execute once for each co-add, incrementing coadd.num each time. There are
two ways for the program to exit this loop. The usual way is for it to complete the requested number
of co-adds (coadds.spec) and end the observation. Occasionally it will exit because the flag
not.abort has been set false by an abort message from the host.

In the acquisition transputers, routine dcorrsample is called with parameter multi equal to one
(anything greater than one is multiple correlated sampling, described in the next section). The routine
first clears the data buffer frame and the FIFO hardware buffer, and sets the flag coadding to
TRUE, before entering a WHILE loop on flag coadding. This loop will also normally be executed
once per co-add. The two reasons for coadding becoming FALSE, forcing an exit from the loop
are again that the requested number of co-adds is done, or the host has requested an abort. The loop
starts with a message input from the clock generator. There are three possible commands; take
another coadd, abort the frame, or complete the frame. The acquisition transputer has no advance
knowledge of the number of coadds it will do, and in fact it doesn't even keep track of how many it
has done.

3.5.1 Normal completion

Each time it starts its co-adding loop, the clock generator sends a message to the acquisition
transputers, with command identifier cid.daq.integ.start.spec. This is the command that
tells the acquisition transputers that another co-add is to start, so they should expect data.

The acquisition transputers are waiting at the top of their WHILE coadding loop for any incoming
message. When a message arrives, each one passes it on to the next, then parses the command with
a CASE statement. If the command is cid.daq.integ.start.spec, it then goes into a loop
which it will execute multi times, which in this case means just once, since this is DCS. Inside that
loop is an enumerated loop where it sets up an interrupt on the half full flag of the FIFO input buffer.
This interrupt will go off once data starts to arrive.

Once the integ.start command has passed from the last acquisition transputer to the clock
generator, the clock generator now knows that all the acquisition transputers are ready for data, so
it can start the co-add. It takes a time-stamp from the on-chip clock, and clears the detector array
using routine global.reset (reset on the SCAM). Next, the clock generator calls routine
clockwave to generate the readout clock pattern. This clocks through the array, selecting the pixels
in sequence, and latches a stream of pixels into the acquisition transputers’ FIFO input buffers.

The acquisition transputers are waiting for this first set of pixels to arrive. Since this set of samples
is taken before the integration time, they are subtracted from the co-add buffer values. The set at the
end of the integration will be added, so the resulting data will be the difference between the two sets.
Every time the input FIFO buffers reach half full (256 pixel values) the hardware interrupts the

Printed November 28, 2012 12 NSPN33.00

acquisition transputers (the line event ? event.byte), which then read in data. After each
block of 256 pixels is read, each transputer goes through a long sequence of lines to subtract the
values from the buffer, then goes back to the top of the enumerated loop. It will execute this loop 256
times (128 times for the SCAM), so each acquisition transputer buffers 65536 pixels (32768 on the
SCAM). The acquisition transputers now wait for the next set of pixels.

The clock generator then waits for the integration time to expire. Since during the integration time
the clock generator is sitting idle, it is here we allow messages from the host to interrupt the flow.
We use the Occam ALT construct to handle this situation. The ALT allows the clock generator to
sit idle and wait for input from either the time expiring or a message arriving. (We will talk about
what happens when a message arrives in the next subsection).

Once the integration time expires, the clock generator calls routine clockwave to generate another
readout clock pattern. This clocks through the array again, and latches a second stream of pixels into
the acquisition transputers’ FIFO input buffers. Finally it increments the counter coadd.num.

The acquisition transputers have entered another loop on the variable multi (which again they will
do just once for DCS) and are waiting at the top of a second enumerated loop for this second set of
pixels to arrive. Again the half full signal from the FIFO input buffers generates interrupts, and the
transputers read in 256 pixels on each interrupt. After a block of 256 pixels is read, each transputer
goes through a long sequence of lines to add these new values to those already in the buffer, then
goes back to the top of the enumerated loop. As before it will execute this loop 256 times (128 times
for the SCAM). The acquisition transputers then go back to the top of their WHILE coadding
loop and wait for another command.

This whole sequence will repeat until the clock generator has counted up the right number of co-adds
(coadd.num equals coadd.spec). It then exits its co-adding loop. Once out of the loop it checks
whether not.abort is true. If it is, meaning the coadd loop ended normally, it sends command
cid.daq.integ.end.spec to the acquisition transputers and waits for it to be passed back.

On receiving this integ.end command, each acquisition transputer passes it on to the next, and
so back to the clock generator. Once the clock generator gets this acknowledgment it has completed
all it will do for this frame, and goes back to its main program section where it idles waiting for
messages from the host or messages or data from the acquisition transputers.

After passing on the integ.end command, each acquisition transputer sets coadding to FALSE,
which will end the loop once it gets back to the WHILE at the top. First though, the data have to be
sent to the host. Each acquisition transputer has a unique number, tnum, which is downloaded to
it from the host at run time, so it knows where it is in the chain. The first acquisition transputer has
a tnum of zero, and so on up to 15 (just 0 or 1 in the SCAM), The first one sends a message with
command identifier cid.frame.ready.spec to the clock generator, which passes it back to the
host computer to alert it that data are on the way. The first acquisition transputer then sends its data
to the clock generator, which then passes it back to the host. It then enters a loop where it will take

Printed November 28, 2012 13 NSPN33.00

in the data blocks from the other 15 acquisition transputers and pass them along. It knows from the
value of tnum how many times it will have to do this. The next one along has a tnum of 1, so it will
send its own data, then pass along only 14 blocks from the others, and so on down the line to the last
one, which sends its own data, but doesn't have to pass along any.

Having sent back their data, the acquisition transputers too can go back to their main program loop
where they wait for further commands.

3.5.2 Abort

If the host sends an abort command during an integration, it will be received by the clock generator
during the idle period of the integration between the first and second times it clocks out the data. If
that happens, the clock generator has to do a couple of things. It can't just pass the message straight
on to the acquisition transputers, since at this point they are waiting for the second set of incoming
data, so first it clocks the array so that the acquisition transputers will complete the current co-add
and go back to listening for messages. It doesn't matter that this is happening before the end of the
allotted integration time, since the data will be trashed anyway. It then sets the flag not.abort to
FALSE, so it will exit its own loop, then acknowledges the abort message with an echo to the host.
Once it has exited the co-adding loop, it checks the value of not.abort. If it's false then it passes
the message along to the acquisition transputers and waits for the acknowledgment that they have
all received it.

When the acquisition transputers get the abort message, each passes the message along to the next,
then sets flag coadding to false. This will cause it to drop out of its co-adding loop without ever
sending the data back. The data are effectively discarded since the frame buffer is cleared at the start
of the next observation.

Printed November 28, 2012 14 NSPN33.00

Clock generator code for a double correlated sampling frame

 cid.go.spec -- take an observation
 SEQ
 coadd.num := 0
 not.abort := TRUE
 to.daq ! msg; cid; param -- pass the cid.go command to the acquisition transputers
 CASE sampmode -- which sampling mode is to be used for this observation?

 single.samp -- single sample mode (reset, wait integration time, read)
 <-------
 single sampling code
 -------->

 correlated.double.samp -- correlated double sample mode. sequence is reset, read 1st frame, wait
 SEQ -- integration time, read 2nd frame. signal is 2nd frame minus 1st frame.
 WHILE ((coadd.num < coadds.spec) AND not.abort)
 SEQ
 to.daq ! msg; cid.daq.integ.start.spec; param -- tells daqs to start this coadd
 loop.back ? CASE -- wait for loopback of integ.start
 msg; cid; param
 SKIP
 loadwave (read) -- load FIFO with read frame
 global.reset ()
 clock ? time.now -- start integration timer
 clockwave (read) -- read first frame
 ALT -- now wait for end of integration *or* abort message
 clock ? AFTER time.now PLUS itime.spec.ticks -- integration time has expired
 SEQ
 clockwave (read) -- read second frame
 coadd.num := coadd.num + 1 -- keep track of coadd count

 from.root ? CASE -- message from host
 msg; cid; param
 SEQ
 CASE cid -- check the command
 cid.abort.spec -- command is abort (discard data)
 SEQ
 clockwave (read) -- do read frame so daqs can finish their loop
 not.abort := FALSE -- FALSE means we will drop out of the coadding loop
 to.root ! msg; cid.abort.spec ; spec -- acknowledge message
 ELSE
 SKIP
 -- end of WHILE loop

 -- finish the observation
 IF
 not.abort -- we didn't end because of abort message
 SEQ
 to.daq ! msg; cid.daq.integ.end.spec ; 0 -- tell the daqs we're done
 loop.back ? CASE -- wait for the echo of the integ.end from the last DAQ
 msg; cid; param
 SKIP
 TRUE -- we *did* end on an abort
 SEQ
 to.daq ! msg; cid.abort.spec ; 0 -- tell the daqs we're done
 loop.back ? CASE -- wait for the echo of the cid.abort from the last DAQ
 msg; cid; param
 SKIP

Printed November 28, 2012 15 NSPN33.00

Acquisition code for a double or multiple correlated sampling frame

 PROC dcorrsample (VAL INT tnum, multi, CHAN OF TRANS2TRANS up, down, in, out)
 --
 -- d c o r r s a m p l e We use this procedure to take data in double correlated sampling mode with co-adding.
 -- Also does multiple correlated sampling when multi > 1.
 BYTE cid :
 INT index :
 INT param :
 INT result :
 BOOL coadding :
 BYTE event.byte :
 INT should.be :
 SEQ
 SEQ i = 0 FOR 65536 -- First clear the data array
 frame[i] := 0
 FifoRst := 0 -- clear the FIFO incoming data buffer
 coadding := TRUE
 WHILE coadding -- loop until coadding is set to false
 SEQ
 up ? CASE -- wait for a message from the host...
 msg; cid; param
 SEQ
 down ! msg; cid; param -- ...and pass it on downstream
 CASE cid -- now check message content
 cid.daq.integ.start.spec -- message is start of a coadd
 SEQ
 SEQ samples = 0 FOR multi -- read frame "before" data multi times at start of itime
 SEQ
 index := 0 -- init pointer into input data array
 SEQ i = 0 FOR 256 -- read data in 256 blocks of 256 pixels
 SEQ
 subframe IS [frame FROM index FOR 256] : -- define block in frame array
 SEQ
 int.enable := half.full -- specify interrupt on half full flag of FIFO buffer
 master := master.int.en -- enable interrupts
 event ? event.byte -- wait for interrupt event
 result := int.poll /\ half.full -- mask half full bit in interrupt result register
 should.be := half.full
 IF
 result <> should.be -- check interrupt really was half full
 CAUSEERROR() -- if not we have a fatal error, bomb out
 TRUE
 SKIP
 int.enable := 0 -- turn off interrupts
 [dma FROM 0 FOR 256] := [FifoRdLo16 FROM 0 FOR 256] -- read in chunk of data
 subframe[0] := subframe[0] - dma[0] -- subtract "before" samples from buffer
 :
 subframe[255] := subframe[255] - dma[255]
 index := index + 256
 FifoRst := 0 -- empty the FIFO at the end of the frame sequence
 SEQ samples = 0 FOR multi -- read frame "after" data multi times at end of itime
 SEQ
 index := 0 -- init pointer into incoming data array
 SEQ i = 0 FOR 256 -- again we will take in 256 blocks of 256 pixels
 SEQ
 subframe IS [frame FROM index FOR 256] : -- define block in frame array
 SEQ
 int.enable := half.full -- set up to interrupt on FIFO half full flag
 master := master.int.en -- enable interrupts
 event ? event.byte -- wait for interrupt event
 result := int.poll /\ half.full -- mask half full bit in interrupt results register
 should.be := half.full
 IF
 result <> should.be -- check it really was half full that caused the interrupt
 CAUSEERROR() -- if not we have a fatal error so bomb out
 TRUE
 SKIP -- otherwise go on to read data
 int.enable := 0 -- disable the interrupt
 [dma FROM 0 FOR 256] := [FifoRdLo16 FROM 0 FOR 256] -- read in block of data
 subframe[0] := subframe[0] + dma[0] -- now coadd the "after" pixels into the buffer
 :
 subframe[255] := subframe[255] + dma[255]
 index := index + 256 -- increment pointer
 FifoRst := 0 -- empty the FIFO at the end of a frame
 cid.abort.spec -- command is abort observation
 SEQ
 coadding := FALSE -- this will drop us out of "WHILE coadding"loop
 cid.daq.integ.end.spec -- command is end of integration
 SEQ
 coadding := FALSE -- this will drop us out of "WHILE coadding"loop
 SEQ i=0 FOR 65536
 frame[i] := frame[i] / multi -- divide frame data by number of reads
 IF
 tnum = 0 -- first transputer only, send "frame ready" to root
 out ! msg; cid.frame.ready.spec; spec
 TRUE
 SKIP
 out ! data; tnum; 65536::frame -- send out frame data
 SEQ i = 0 FOR (15 - tnum) -- pass on data from downstream processors
 SEQ
 in ? CASE
 data; tid; frame.size::frame
 out ! data; tid; frame.size::frame
 :

Printed November 28, 2012 16 NSPN33.00

3.6 Multiple correlated sampling (aka Fowler sampling)

On entering the code section for multiple correlated sampling, the clock generator enters a WHILE
loop, which it will execute once for each co-add, incrementing coadd.num each time. There are
two ways for the program to exit this loop. The usual way is for it to complete the requested number
of co-adds (coadds.spec) and end the observation. Occasionally it will exit because the flag
not.abort has been set false by an abort message from the host.

In the acquisition transputers, routine dcorrsample is called with parameter multi equal to the
number of requested coadds, which is some integer greater than one (the value one gives double
correlated sampling, described in the previous section). The routine first clears the data buffer
frame and the FIFO hardware buffer, and sets the flag coadding to TRUE, before entering a
WHILE loop on flag coadding. This loop will also normally be executed once per co-add. The
two reasons for coadding becoming FALSE, forcing an exit from the loop are again that the
requested number of co-adds is done, or the host has requested an abort. The loop starts with a
message input from the clock generator. There are three possible commands; take another coadd,
abort the frame, or complete the frame. The acquisition transputer has no advance knowledge of the
number of coadds it will do, and in fact it doesn't even keep track of how many it has done.

3.6.1 Normal completion

Each time it starts its co-adding loop, the clock generator sends a message to the acquisition
transputers, with command identifier cid.daq.integ.start.spec. This is the command that
tells the acquisition transputers that another co-add is to start, so they should expect data.

The acquisition transputers are waiting at the top of their WHILE coadding loop for any incoming
message. When a message arrives, each one passes it on to the next, then parses the command with
a CASE statement. If the command is cid.daq.integ.start.spec, it then goes into a loop
which it will execute multi times. Inside that loop is an enumerated loop where it sets up an
interrupt on the half full flag of the FIFO input buffer. This interrupt will go off once data starts to
arrive.

Once the integ.start command has passed from the last acquisition transputer to the clock
generator, the clock generator now knows that all the acquisition transputers are ready for data, so
it can start the co-add. It takes a time-stamp from the on-chip clock, and clears the detector array
using routine global.reset (reset on the SCAM). Next, the clock generator goes into an
enumerated loop which is executed multi times. Each time through this loop it calls routine
clockwave to generate the readout clock pattern, then pauses briefly before doing it again. This
clocks through the array, selecting the pixels in sequence, and latches a stream of pixels into the
acquisition transputers’ FIFO input buffers.

The acquisition transputers are waiting in two nested enumerated loops for pixel data to arrive. The
outer loop is executed multi times. In the inner enumerated loop, it reads in the pixel data. Since

Printed November 28, 2012 17 NSPN33.00

these pixel values are taken before the integration time, they are subtracted from the co-add buffer
values. The pixel data at the end of the integration will be added, so the resulting data will be the
difference between the two sets. Every time the input FIFO buffers reach half full (256 pixel values)
the hardware interrupts the acquisition transputers (the line event ? event.byte), which then
read in data. After each block of 256 pixels is read, each transputer goes through a long sequence of
lines to subtract the values from the buffer, then goes back to the top of the enumerated loop. It will
execute this loop 256 times (128 times for the SCAM), so each acquisition transputer buffers 65536
pixels (32768 on the SCAM). The acquisition transputers now wait for the next multi frames
worth of pixels.

The clock generator then waits for the integration time to expire. Since during the integration time
the clock generator is sitting idle, it is here we allow messages from the host to interrupt the flow.
We use the Occam ALT construct to handle this situation. The ALT allows the clock generator to
sit idle and wait for input from either the time expiring or a message arriving. (We will talk about
what happens when a message arrives in the next subsection).

Once the integration time expires, the clock generator again goes into a loop where it calls routine
clockwave to generate the readout clock pattern times. This latches a second stream of pixels into
the acquisition transputers’ FIFO input buffers. Finally it increments the counter coadd.num.

The acquisition transputers have entered another loop on the variable multi and are waiting at the
top of the inner enumerated loop for this second set of pixels to arrive. Again the half full signal
from the FIFO input buffers generates interrupts, and the transputers read in 256 pixels on each
interrupt. After a block of 256 pixels is read, each transputer goes through a long sequence of lines
to add these new values to those already in the buffer, then goes back to the top of the enumerated
loop. As before it will execute this loop 256 times (128 times for the SCAM). Once the multi frames
worth of pixels have been read in, this co-add is over, and the acquisition transputers then go back
to the top of their WHILE coadding loop and wait for another command.

This whole sequence will repeat until the clock generator has counted up the right number of co-adds
(coadd.num equals coadd.spec). It then exits its co-adding loop. Once out of the loop it checks
whether not.abort is true. If it is, meaning the coadd loop ended normally, it sends command
cid.daq.integ.end.spec to the acquisition transputers and waits for it to be passed back.

On receiving this integ.end command, each acquisition transputer passes it on to the next, and
so back to the clock generator. Once the clock generator gets this acknowledgment it has completed
all it will do for this frame, and goes back to its main program section where it idles waiting for
messages from the host or messages or data from the acquisition transputers.

After passing on the integ.end command, each acquisition transputer sets coadding to FALSE,
which will end the loop once it gets back to the WHILE at the top. First though, the data have to be
sent to the host. Each acquisition transputer has a unique number, tnum, which is downloaded to
it from the host at run time, so it knows where it is in the chain. The first acquisition transputer has

Printed November 28, 2012 18 NSPN33.00

a tnum of zero, and so on up to 15 (just 0 or 1 in the SCAM), The first one sends a message with
command identifier cid.frame.ready.spec to the clock generator, which passes it back to the
host computer to alert it that data are on the way. The first acquisition transputer then sends its data
to the clock generator, which then passes it back to the host. It then enters a loop where it will take
in the data blocks from the other 15 acquisition transputers and pass them along. It knows from the
value of tnum how many times it will have to do this. The next one along has a tnum of 1, so it will
send its own data, then pass along only 14 blocks from the others, and so on down the line to the last
one, which sends its own data, but doesn't have to pass along any.

Having sent back their data, the acquisition transputers too can go back to their main program loop
where they wait for further commands.

3.6.2 Abort

If the host sends an abort command during an integration, it will be received by the clock generator
during the idle period of the integration between the first and second times it clocks out the data. If
that happens, the clock generator has to do a couple of things. It can't just pass the message straight
on to the acquisition transputers, since at this point they are waiting for the second set of incoming
data, so first it clocks the array multi times, so that the acquisition transputers will complete the
current co-add and go back to listening for messages. It doesn't matter that this is happening before
the end of the allotted integration time, since the data will be trashed anyway. It then sets the flag
not.abort to FALSE, so it will exit its own loop, then acknowledges the abort message with an
echo to the host. Once it has exited the co-adding loop, it checks the value of not.abort. If it's
false then it passes the message along to the acquisition transputers and waits for the
acknowledgment that they have all received it.

When the acquisition transputers get the abort message, each passes the message along to the next,
then sets flag coadding to false. This will cause it to drop out of its co-adding loop without ever
sending the data back. The data are effectively discarded since the frame buffer is cleared at the start
of the next observation.

Printed November 28, 2012 19 NSPN33.00

Clock generator code for a multiple correlated sample
 cid.go.scam -- take data
 SEQ
 coadd.num := 0
 not.abort := TRUE
 to.daq ! msg; cid; param -- pass command to the acquisition transputers so they get ready
 CASE sampmode -- now execute the section for the appropriate sample mode
 <--------
 Single sampling and DCS code here
 --------->
 mult.corr.sample
 SEQ
 WHILE ((coadd.num < coadds.scam) AND not.abort)
 SEQ
 to.daq ! msg; cid.daq.integ.start.scam ; param
 loadwave (reset)
 loop.back ? CASE -- waiting for DAQ ready signal (echo of integ.start)
 msg; cid; param
 SKIP
 clockwave (reset)
 loadwave (read)
 clock ? time.now -- start integration time
 SEQ i = 0 FOR multi -- read the "pedestal" level multi times
 SEQ
 clockwave (read)
 wait.micros (multiread.pause)
 ALT -- wait for integration to end or abort
 clock ? AFTER time.now PLUS itime.scam.ticks --wait for integration time to elapse
 SEQ
 SEQ i = 0 FOR multi -- read out array multi times
 SEQ
 clockwave (read)
 wait.micros (multiread.pause)
 OutputMode := registerHL -- select direct output register
 DirectBoth[0] := read.enable -- turn on the read.enable line
 coadd.num := coadd.num + 1
 root.to.clock ? CASE -- poll abort signal
 msg; cid; param
 SEQ
 CASE cid
 cid.abort.scam
 SEQ
 SEQ i = 0 FOR multi -- read out array multi times
 SEQ
 clockwave (read)
 wait.micros (multiread.pause)
 OutputMode := registerHL -- select direct output register
 DirectBoth[0] := read.enable -- turn on the read.enable line
 not.abort := FALSE
 clock.to.root ! msg; cid.abort.scam ; Scam
 ELSE
 SKIP
 IF
 not.abort
 SEQ
 to.daq ! msg; cid.daq.integ.end.scam; 0
 loop.back ? CASE -- receives the echo of the cid from the last DAQ
 msg; cid; param
 SKIP
 TRUE
 SEQ
 to.daq ! msg; cid.abort.scam ; 0
 loop.back ? CASE -- receives the echo of the cid from the last DAQ
 msg; cid; param
 SKIP

