NIRSPEC

UCLA Astrophysics Program U.C. Berkeley W.M .Keck Observatory
George Brims Revised November 20, 1998

NIRSPEC Softwar e Programming Note 22.00
I ntroduction to transputersand occam programming

LN rOdUCION . e 2

2 TraNSPULE PIrOCESSOL . . ot ittt ettt et et e e et e e e e e e e e e e e e e e e et e e e e 2

3 OCCAM ANQUAGE . . ottt i ettt e e e e e e 4
3. INtrodUCHION . .. 4
32 PrOCESSES . . ittt 5
3.3 ChanNnElS ... 6
B DA A Y PES .« o it e

7
3.4.1 Primitive datatypes 7
3.4.2 Scope of a declaration 8
3.4.3 Variables 8
3.4.4 Constants 9
3.4.5 Literals 9
3.4.6 Indices 9

0

3.4.7 Arrays 1

3.5 SEQ CONSIIUCE ..ot e e e e e e 11

3.6 PAR CONSIIUCT ...ttt e e e e e e e e 12

3.7 ALT CONSIIUCE . . .t e e e e et 13

3.8 Channealsvs. PAR and AL T ... e e e e 16

B0 IR o 16

310 CASE o 17

G 350 O 1o oo 11 o 18

B 12 PLACE ..ottt 19

313 PRI PAR and PRI AL T o e e e 19

314 TIMER .. 20

4 INter-process COMMUNICALIONS . .. v vttt ittt ettt e e ettt e e e e ettt et ettt 23
4.1 HardwarelinKs e e 23

4.2 Software Channels 24

4.3 ProtOCOIS ..ttt e e 25

5 Host-transputer COMMUNICALIONSt . ittt e e e e e ettt ettt 27
6 Interfacingtotheoutsideworld i 27
7 Development toolsand program building i e 28
7.2 Sourcecodeand version CoNtrolttt e e 28

7.3 COMPIING . .o 29

T4 LINKING . .o 29

7.5 CONfIgUI AL ON ..o 29

7.6 Generatingtheexecutablefile 30

7.7 Loading and rUNNINg . ..ottt e e 30

7.8 ULITIES . . oo 31

Printed December 7, 2012 1 NSPN22.00

1 Introduction

The data acquisition and control electronics in NIRSPEC (and NIRC2) are based on the SGS-
Thomson transputer. The idea of this note is to give programmers an introduction to what a
transputer is, what it does, how it isparticularly suited to real-time control and data acquisition, and
how we build programs. Obvioudly, it should be read in conjunction with the occam language
manuals, since there’s no point in repeating everything they contain (and | don't). Since the
transputer isalittledifferent and the occam languageal ot different from other thingsyou might have
encountered before, | thought it wasworth putting this guide together to help support programmers
get started. Some of the information is general, and some is specific to the hardware architecture of
the DSP Systems boards and connection hardware we are using. Wherever possible I’ ve used
examplesfrom our own code, sincethewholeideaisto give support to the more specific documents
describing the code we run on the transputers and the communi cations between them.

There are a number of advantages to using transputers and occam from the point of view of
instrument control or other real-time tasks. First of al, it is easy to implement parallelism of a
number of processes so that multiple pieces of hardware can be controlled and monitored
simultaneously. For instance, the spectrometer and slit-viewing camerasubsystemsinthe NIRSPEC
electronics can both take images at the same time. The only constraint is that the communications
channel for issuing commands and passing back dataisasinglelink between thetransputersand the
host, so one channel or the other might haveto wait to passback itsdata. Similarly, we could operate
al the mechanismsin the system at once, again with passing of commands and acknowledgments
over the same links being the only (slight) bottleneck. Being able to acquire data or move
mechanisms simultaneously is essential for NIRSPEC to operate efficiently.

2 Transputer processor

First aminimal bit of history: the transputer was originally developed in the early 80's by the UK
company Inmos. Inmosweretaken over by alarger company (GEC) andlater sold to SGS-Thomson.
The Inmos name has essentially disappeared as far as SGS-Thomson are concerned, but still crops
up all over the place in the documentation.

The name transputer was meant to indicate that it’s a computer that can be used as acomponent, as
discretetransistorsoncewere, to build up more complex systems. Although the transputer wasvery
successful for awhile (outselling all other processorsworldwide at onetime) the numerous changes
of ownership have hampered development of faster processors. This failure to keep the line up to
date has basically killed off the transputer, and SGS-Thomson have announced that all transputer
products will be phased out at the end of 1998.

When it was introduced, the transputer had a unique combination of features, some of which were

only present in much larger systems, such as the supercomputers of that era. Most now appear in
other more modern microprocessors, particularly DSPs.

Printed December 7, 2012 2 NSPN22.00

These features are;

* 32-bit processor (T400 series) withintegrated FPU inthelater versions(T800 series). There
are also lower cost 16-bit processors (T200 series).

* Processor and fast memory (not cache but program RAM) combined in one device.

» Complete memory interface requiring no support chips (except drivers) to build acomplete
system.

* | nter-processor communications, in the form of four serial links, built into the chip. These
links run at 10 or 20 Mbit/s.

* On-chip scheduling allowing each processor to run multiple concurrent processes.
* On-chip timers allowing for timing to microsecond resol ution.

» Concurrent design of the processorsand the high-level language occam, removing the need
to resort to assembly language for performance gains.

Syst-em <> K+ Processor
services
Link
Timers <> — interface
< > . Link
interface
< D> . Link
interface
On-chip :
< F Link
RAM interface
< D> .Event
interface

i

External memory interface

Figure 1 Transputer architecture

Printed December 7, 2012 3 NSPN22.00

The power of thiscombination of featuresliesmainly inthe ease with which parallel processing can
be achieved. A transputer system can be built and the software prototyped and run on a single
transputer, running multiple communicating parallel processes. As performance demandsincrease,
more transputers can be added. The parallel processes will then run on different processors,
communicating over the serial links, with minimal software changes. Unless the network becomes
very complex or most of the work involves moving data around rather than operating on it, the
performance of asystem of transputers scalesamost linearly with the number of processors, unlike
aconventional system where transfer of data between processorsisn’t as efficient. For this reason
very inexpensive mini-supercomputers based on transputers were marketed by companies such as
Meiko.

Theseria linksaresimpleto useintermsof hardware, sincethey require no additional support chips
when used over short distances (up to afew feet, perfectly adequate within arack of electronics).
They can be extended over longer distances using differential driversor fiber-optics. They areaso
surprisingly ssmple to use from software, because the link hardware on the transputer chip is quite
sophisticated.

Each transfer acrossalink is split up and sent as a series of packets, with a checksum tagged onto
the end of each. The receiving transputer 1ooks at the checksum and sends an acknowledgment
messageif it’ scorrect. If not, aresend request is sent instead, and the sending transputer resendsthe
packet. Once the information comes through cleanly the receiving code sees it, and the sending
program can move on to the next line of code. Calculating and checking the checksumsisinvisible
to the programmer; it is all handled transparently by the silicon. If you are working in a noisy
environment you might noticeafall off in overall throughput if many packetsare corrupted and need
to beresent, but datawill alwaystransfer accurately. The only downsideto thisisthat speed of light
limitationscomeinto play sooner if thelinksare extended (for exampleusing optical fiber) over very
long distances. Each successive packet isheld up until the acknowledgment for the previous packet
arrives, so thereis an interval between the start of each packet, set by the round-trip time over the
link.

3 Occam language
3.1 Introduction

The occam programming language was devel oped to take advantage of the transputer’ sarchitecture
(and vice versa). In terms of writing sequences of procedural code, it’s a pretty ordinary sort of
language easily followed by anyone who has programmed in C, Pascal or FORTRAN. The
fundamental concept of occam that’ sdifferent from these other languagesisthat it hasfacilitiesfor
constructing codeto operatein parallel piecesall communicating with each other, either onthe same
processor or distributed over many processors. (I should point out there are available C compilers
with these facilities, but they produce executable code that runs 10 to 20% slower than matching
occam.)

Printed December 7, 2012 4 NSPN22.00

3.2 Processes

The fundamental entity in occam isthe process. The term processis used interchangeably to mean
aprogram, or aportion of a program, or even a single line of code. Processes communicate (and
thereby also synchronize their operations) over channels.

The three most basic processes are:

variable := expression -- assign anew valueto avariable
channel ? variable -- input avalue from a channel to avariable
channel ! variable -- output the value of avariable to a channel

Every occam programisbuilt up from sequencesof thesethreebasic operations. A sequence of these
primitive processes can form amore complex process, which can communicate with other complex
processes. Conventional sequential code is built up from primitive processes combined using the
constructs SEQ, | F, CASE and WHI L E, and concurrent programswith theadditional constructsPAR
and ALT. These constructs are described in the following subsections.

Anoccam program isdeclared with the keyword PROC (meaning process rather than procedure) as
in:

PROC myprog (linkin, linkout)

INT x : -- variables & constants declared
SEQ -- code

linkin ? x -— ...

X :=x+ 1 --

linkout ! x —-

-- end of process myprog

The parameters of the PROC declaration (1inkin and 1inkout in our example) can be any
combination of channels which the program will use to communicate with other processes.

This example illustrates an extremely important point about the mechanics of writing occam.
Indentation of lines of source code is significant. Note that the colon signifying the end of the
processis placed at the left margin like the PROC keyword, and everything elseisindented at least
2 gpaces. We will see more examples as we go through the use of the other keywords. The
indentation rules make occam source code more readable, but can also be very annoying!

Also in the above example, you can see the use of the comment separator, which istwo dashesin

succession. These can delimit comments placed after the code on the same line, or on aline by
themselves. In thelatter case the comments must be indented to the current level just like the code.

Printed December 7, 2012 5 NSPN22.00

Within a process we can list any other processes (equivalent to subroutines or functions in other
languages) we need to use. These are declared with the same keyword, such as:

PROC myprog (linkin, linkout)

PROC mathfunc (x,vy)
e -- function code goes here
-- end of process mathfunc

ﬁéﬁhfunc (a,b) -- call mathfunc

-- end of process myprog

Note again the indentation; the declaration of processmathfunc isindented by 2 spacesfrom the
left, asisits terminating colon, and everything between the mathfunc declaration and the colon
isindented at least 2 spaces further.

3.3 Channels

Each channel is a one-way connection between two processes. We can declare a pair of channels,
onein each direction, to run over any hardware link between connected transputers, but we can also
declarevirtual channel sto connect processeson the sametransputer. These processes can bedistinct
programs or just different parallel code segments of the same process. Communication over either
type of channel is handled in exactly the same way, so when two processes hosted on the same
processor become too demanding of resourceswe can split them over two separate transputers and
use almost exactly the same code. The only thing that will change is a configuration file which the
softwaretool suseto map the processes onto the hardware network. Setting up thisconfigurationfile
is described later.

Note that communication over channels is unbuffered and synchronous. This means a sending
process is stalled until the receiving process has accepted a message (and a receiving process is
likewise stalled until the sending process sends all of it). This characteristic of channel
communication can cause trouble (a deadlocked system) if the behaviors of senders and receivers
aren’t carefully matched. However, we can also exploit it in the situation where one process needs
towait until another oneisready before proceeding with sometask. We can use amessageto ensure
synchronization. For instance to synchronize the clock generation and data acquisition transputers
in the two camera sections of NIRSPEC, the clock generator sends out a message before it startsa
frame readout. Each acquisition transputer readies itself (clearing buffers etc.) then passes the
message to the next. The last acquisition transputer passes the message back to the clock generator
(they’re all connected in aloop). Only when it sees that message does the clock generator start
clocking out the frame.

We will discuss and illustrate how channd declarations are coded in section 4.2.

Printed December 7, 2012 6 NSPN22.00

3.4 Data types

Declaring variables etc. in occam is not aways as simple as it might seem, since it includes a few
facilities that are both useful and a bit strange.

Occam expressions can include four types of objects. These are literals, constants, variables, or
indices. A literal is simply something you would type as part of an expression, such as 1, 2, 'H',
1.0E+6. A variable can be assigned a value through an assignment or a channel input, whereas a
constant is defined when declared and is then read-only. An index is defined as part of a loop
construct.

3.4.1 Primitive datatypes

Occam has the usual selection of data types. As in many languages, the meaning of the integer
keyword varieswith thetype of processor. Onthe 32-bit processors(T800 & T400 series) it's32 bits
and on the T200 seriesit's 16 bits. To make an integer arequired size the three other INT types et
you be specific.

The data types available in occam are:

Type Description Range of values

BOOL boolean Trueor false

BYTE byte 0to 255

INT integer Signed integer, number of bits depends on processor type
INT16 16-bit integer -32768 to 32767

INT32 32-bit integer 2% t0 (2% -1)

INT64 64-bit integer -2%t0 (2%2-1)

REAL32 | 32-bit floating point | As|EEE standard 784"

REALG64 | 64-bit floating point | AsIEEE standard 784

Asin any other language, there are rounding errors involved in using floating-point values.

Printed December 7, 2012 7 NSPN22.00

Y ou can define your own data types in occam, but they are formed from the above primitive data
types. To create your own data types and declare variables of those types, you would use :

DATA TYPE LENGTH IS REAL32
DATA TYPE AREA IS REAL32
LENGTH x:

AREA y :

Notethat LENGTH and AREA don’t need to bewritten all in uppercase, but are written that way just
to keep them consistent with the normal keywords like INT and make the code more readable.
Defining your own variable types allows the type checking in the compiler to make sure you pass
only the appropriate kind of datato a procedure. Although x and y in our example are both stored
asREAL32 numbers, they are of different datatypes. So if aprocedureis defined with a parameter
of type LENGTH, passing it y as parameter is flagged as a type mismatch.

3.4.2 Scope of a declaration

When we declare a variable or constant in occam, we have to be aware what its scope is. Just
because we declare something in line 10 of aprogram, it doesn't mean it'svalid in line 100. Here's
an example:

SEQ
INT max
INT min :

-- gpecify max

-- scope of max -- specify min

SEQ
c ?
c ?
IF
1%

p

-- gscope of min
max -- --
min -- --

max -- --
= p o+ 1 -- --
max -- --

B Ng A

:= min -- --
SEQ

Thevariablemax becomesvalid from the colon at the end of thelinedeclaring it, and min becomes
valid at the end of the next line. Each oneremainsvalid aslong asthe next lineisindented at |east
the same amount, or indented further. Once theindentation level hasincreased further, then returns
to the samelevel asthe declaration (the second SEQ at the bottom of the example), the scope ends.

3.4.3 Variables

In occam variables must always be declared before you can use them in an expression or achannel
input or output. Variables are declared asin the following example:

Printed December 7, 2012 8 NSPN22.00

BYTE b
INT 7
REAL32 X :

Each declaration ends with a colon, and becomes effectiveimmediately following the colon. There
is no restriction on the name except it can’'t be a reserved word like BYTE, SEQ etc. In the
NIRSPEC code we tend to use names which are all lowercase or capitalized, to distinguish them
from the occam keywords, combining words with dots (because they're easier to type than
underlines). Caseis significant in variable (and constant) names.

3.4.4 Constants

Y ou can aso declare a constant, which can never be re-assigned a different value, asin:

VAL INT j IS 99
VAL BYTE character IS 123

3.45 Literals

A literal in occamisanything you would writein astatement to use aparticul ar value rather than the
value of adeclared variable or constant. There are default assignments of type, for instance:

42 defaultsto type INT, and 'h' putsthe ASCII value of the letter hin abyte. The default type
can be overridden, so if for example we wanted use a specific numeric value as abyte (for instance
to passit as aparameter to an RS232 routine) we would forceit to be abyte by adding the datatype
in parentheses, asin:

RS232.out (42 (BYTE))

Many timesyou don't haveto bethispreciseif the context tellsthe compiler what typeto assign. For
instance if you are referencing an element of an array, such as x[3], you don't have to put
(INT) after the 3.

3.4.6 Indices
Anindex in occam is declared implicitly whenever we create aloop using the SEQ keyword:

SEQ i = 0 FOR 10
out ! 1

Here we never declare 1, but since it can only be of type INT, the compiler just goes ahead and

assignsit anyway. Notethat within the scope of each passthrough theloop, i isaconstant and can’t
be overwritten.

Printed December 7, 2012 9 NSPN22.00

3.4.7 Arrays

Just as in other language we can declare arrays. Important: array elements always start at zero.
Arrays are declared using this syntax:

[5]INT x :
[3]1 [4]1BYTE vy:

and array elements are referenced as, for instance:

x[4]
yI[1] [2]
[x FOR 4]

The last one means “the first 4 elements of array x”. We could aso have typed
[Xx FROM 0 for 4]

to refer to the same thing. Say we have two arrays aand b, declared as:

[10] INT a :
[10] INT b

Sincethetwo arrays are of the same size and type, we can copy every element from oneto the other
more or less concisely as follows:

a :=b OR [a FROM 0 FOR 10] := [b FROM 0 FOR 10]
We can also use this syntax:
[a FROM 0 FOR 5] := [b FROM 3 FOR 5]
to copy 5 elements of b into different consecutive locationsin a.
Even more useful, we can declare an array to be a section of alarger one. Say we have alarge data
array, and some process which grabs successive small blocks of data. We can pass that process the

name of asmaller array which we repeatedly define to be different sections of the larger one, asin
the following example:

Printed December 7, 2012 10 NSPN22.00

[65536] INT frame:
INT pointer
SEQ
pointer := 0
SEQ i = 0 FOR 256
input IS [frame FROM pointer for 256]:

SEQ
get.data (input)
pointer := pointer + 256

Thearray input isre-defined each time we go through the loop, so each time we call the routine
get .data itwill put thedatain adifferent section of thelarger array frame. Now thisisareally
useful tool, but it'salso potentially confusing to newcomersto occam. First, have to be careful with
how occam assigns a scope to a variable declaration. After we declare the array input it might
seem the SEQ and the indentation of the next line are unnecessary, but in fact they are for the
following reason.

Recall that when we declare avariable, it becomes valid following the colon at the end of theline,
and stays valid aslong as lines beneath are indented to the same level or further (so pointer is
valid fromwhereit'sdeclared through to the end of thiscode segment). But if thefollowinglinesare
indented, oncetheindentation returnsto the samelevel the scope ends. So becauseweadd SEQ right
after input IS...,weareforcedtoindentthelinecalingget .data, whichthen also means
that the scope of input endswhen that indentation ends. So by using the SEQ and the indent we
deliberately limit the scope of the variable so it can be re-defined each time around the loop.

3.5 SEQ construct

The SEQ (sequence) construct ssimply defines a group of instructions that are to be executed in
seguence, just asinaconventional program. I nstructionsgrouped into asequence by aSEQ keyword
might be run in parallel with other sequencesby aPAR or ALT (sections 3.6 & 3.7). A sequence
construct iswritten as:

Process p1 completes before p2 starts, and so on, just as we would see in any other language. For
example:

SEQ
channell ? x
X := X + 1
channel2 ! x

reads in avalue on one channel, increments it, then sends it out on another channel.

Printed December 7, 2012 11 NSPN22.00

Another note on indentation; the linesfollowing a SEQ are awaysindented by two spacesfrom the
SEQ itself. That tells the compiler that they are within the scope of that SEQ keyword.

3.6 PAR construct

The PAR (parallel) construct is used to execute instructionsin parallel, and is written

PAR
pl
p2
p3

Each process executesin parallel with the others. The whole set completes when all the component
processes are complete. For example:

PAR
chanl ? x
chan2 ! vy

The processor will try to read in x and send out y at the sametime over thetwo channels. When both
transfers are compl ete, then the parallel construct is complete. For exampleif we have afollowing
instruction, as here:

PAR
chanl ? x
chan2 ! vy
chan3 ! z

thethird transfer (sending out variable z over channel 3) will not start until both the other messages
have been sent/received. Here again it’s the indentation that tells the compiler that the first two
transfers are within the scope of the PAR keyword, and the third isn’t.

Now each of these examples has single operations running in parallel. What if we want to perform
groups of instructionsin parallel? In that case we need to combine the SEQ and PAR constructs as
in this example:

PAR
SEQ
X := X + 1
chanl ! x
SEQ
y =y - 1
chan2 ! y

Printed December 7, 2012 12 NSPN22.00

The two groups of operations following the two SEQ keywords are executed in parallel. The
compiler knowswhich lines are within the scope of each SEQ by theindentation. It isgood practice
to head each parallel segment withaSEQ evenif itisjust asingleline, asin thefollowing example:

PAR
SEQ
X =X + 1
chanl ! x
SEQ
y =y - 1
chan2 ! vy
SEQ
chan3 ? z

This makes the code clearer. If we had written

SEQ
y : =y -1
chan2 ! vy
chan3 ? =z

the result would be just the same. However it might not be clear to someone looking over the code
whether wereally intended that last lineto beathird parallel stream, or it was supposed to bethelast
line of the second one, and we forgot to indent it far enough.

3.7 ALT construct

The ALT (aternative) construct isan extremely useful facility of occam, particularly inareal-time
system. Itiswrittenjust likeaPAR construct, listing anumber of different code segments. However
instead of telling the compiler the code segments are to be run in parallel, it provides a breakpoint
where only onewill be executed, depending on external events. Each code segment is*guarded” by
achannel input, and the occam program will monitor the input channels and respond to whichever
channel actually receives somethingfir st. So herewe have an examplewherethe programflow can’t
be determined by just examining the code — it istruly real-timeinthat it could behave differently
each timeitisrun.

Where would we use ALT? Traditionally, we would have two choices as to how to implement a
system that could check for and handle input from multiple sources. One way would beto set up a
system of interrupts, including amechanism for figuring out which input caused the interrupt. This
can beanasty thing toimplement, and often meansresorting to assembly language (itisworth noting
here that thereis no assembly language code in the NIRSPEC system). The other method isto use
apolling loopwhichlooksat the status of each sourcein sequence. Thisisgenerally avery compute-
intensive method.

Printed December 7, 2012 13 NSPN22.00

With the ALT construct we have avery simple way to code a sequence that makes the transputer
wait until any one of the inputsis ready, then make the input and perform its following section of
code. In essencethe ALT construct isan interrupt facility built into the high-level language so that
assembler coding isunnecessary, and we don’ t haveto messaround with control and statusregisters
and bit masks.

In the following example, the transputer waits for input on one of three channels, c1, c2, or c3.
When any one of these channelsisready for input, the byte received is sent out on another channel,
c4. Only thefirst channel to actually receive amessage is serviced, and input from the other twois
ignored.

ALT
cl ? bytel -- read from channel cl
c4 | bytel -- send out on channel c4
c2 ? byte2 -- read from channel c2
c4d ! byte2 -- send out on channel c4
c3 ? byte3 -- read from channel c3
c4 | byte3d -- send out on channel c4

There are advantages to this construct over both of the traditional methods. We didn’t have to
implement anything in assembler or worry about servicing the wrong interrupt. Whichever input
occurs first will always be the one serviced. Also this method is not compute intensive, for the
following reason: if this code segment appeared in one of agroup of parallel processes, the process
would be de-scheduled whileit waited for the inputs, and would consume no processor cycles until
an input occurred.

The most important use of this construct in our application iswhere we nest such apiece of codein
aloop, so that it continuously monitors multiple message streams and acts as a multiplexer for
messages. The root transputer for instance has exactly this setup where it multiplexes replies from
all the other transputers onto a single link back to the host.

What if we want to switch off one of the optionsinan ALT under certain circumstances, or in other
circumstances always choose aparticular one? To implement the former, we can combine aboolean
expression with an input to guard one of the alternatives. For example:

ALT
Monday & inl ? data
out ! data
in2 ? data
out ! data

HereMonday isavariable of type BOOL (boolean) and can only havethevaluesTRUE or FAL SE,
and the ampersand character actsasalogica “and”. If Monday istrue, thenthe ALT will allow the

Printed December 7, 2012 14 NSPN22.00

option of reading in datafrom channel in1, otherwise only aninput on channel in2 can causethe
process to proceed.

There'salso away to always choose the same option if some controlling variableistrue. To do this
we combine a boolean with a SKIP in place of an input, thus:

ALT
Monday & SKIP
out ! new.data
in2 ? data
out ! data

Now if Monday istrue, the SKIP (“do nothing” instruction) acts like an input that’ s always ready,
and that option will immediately execute; otherwisethe ALT will wait for input onin2 as normal.

The above examples deal only with input from channels. What about taking action to service a
request from a piece of hardware? For example, say we have interfaced a FIFO buffer chip to the
transputer to receivedatafrom something external (thisishow the NIRSPEC acquisition boardstake
in data from the A-D converters). The hardware will need to have away to tell the transputer that
it has incoming data. The facility that we can use here is called the event port. We can declare a
special type of channel called a PORT and use the occam PLACE construct (see 3.12) toputitat a
standard placein memory (memory location 8). We can then add to our AL T alineto read adummy
bytefromit just asif it were aregular channel. Thisinput won’t complete until the transputer sees
atransition on oneof itsexternal lines (called EventReq). Again thisisnot computeintensive— the
processor isn't continually polling this dummy input.

For example we could declare the port and a dummy byte to read from it, thus:

BYTE event.byte
PORT OF BYTE event
PLACE event AT 8

To trigger from a hardware event we would use:

ALT
event ? event.byte
chanl ! got.data
chan2 ? message
chanl ! got.message

Thevaueread into event . byte will beirrelevant; what mattersisthat this read will trigger the
ALT when some hardware event alters the state of the EventReq line.

Printed December 7, 2012 15 NSPN22.00

3.8 Channelsvs. PAR and ALT

There are restrictions on how we use channelswith parallel processes. Imagine we have a piece of
code asfollows:

PAR
SEQ
out ! x,v,z
SEQ
out ! a,b,c

Recall that the two parallel streams are executing on the same processor, time-sliced by the on-chip
scheduler. What would happenif thefirst stream started towrite a, b and ¢ to channel out, but was
then de-scheduled to allow the second stream its share of the CPU time? The second stream could
then start towritex, y, and z to out aso. Theresult could bethereceiving process getting agarbled
sequence of data such as a, b, %, ¢, v, z. In order to avoid this possibility, two or more parallel
streams are not allowed to use the same link in the same direction. In fact the compiler would flag
the above code as an error.

However the following code isvalid:

ALT
inl ? X,VY,2
SEQ

out ! x,v,z
in2 ? a,b,c
SEQ
out ! a,b,c
It is OK for each of the code sequencesin the ALT to contain awrite to channel out because only
one of themwill be executed, depending on which input occursfirst.

39 IF
The conditional construct IF is much like any other language (with one nasty pitfall!). Usageis.

IF
conditionl

pl
condition2

P2

Printed December 7, 2012 16 NSPN22.00

If conditionl istrue, plisexecuted, if condition2 istruep2 isexecuted, and so on. Only
one option is executed, then the construct terminates. The pitfall is that we have to cover all
eventualities, or the program will stall! For example:

IF
x
y + 1

[|
Il

X
=y + 2

N

will get stuck if x isnegative, or hasavalueof 2 or greater. If we change the second condition so we
have:

IF

X

»
NOAK
v
o

vy + 1

y + 2

(“<>" means “not equal to”) then all possible values of x are covered and one of the options will
aways be taken.

What if we really did only want to do something if x is0 or 1, and take no action if it has other
values? We can then add a third condition as follows:

IF
x =20
y =y + 1
x =1
y =Yy + 2
TRUE
SKIP

The meaning of the occam keyword TRUE is self-evident (there's also FALSE; either can be
assigned to a variable). The SKIP keyword ssimply means “do nothing”. This IF statement will
always complete since if neither of the first two tests yields atrue condition, the third will.

3.10 CASE

The CASE construct is similar to that used in other languages. An example would be:

CASE x
Y
outl ! x
zZ, 2
out2 ! x

Printed December 7, 2012 17 NSPN22.00

If x hasthe samevalue asy thenitissent viachannel out1, butif it's2 or equal to z then it goes
viaout?2. Thisisexactly how command messages from the host are routed through our transputer
network. The“root” transputer connected to the host passes on messagesto the spectrometer camera,
the dlit-viewing camera, and the RS232 and motion control transputers. Each message consists of
a byte command id and an integer parameter value; a very long CASE statement examines the
command id and passes the message on via the appropriate channel.

3.11 Looping

Thereareacouple of different waysto implement aloop in occam. One usesthe SEQ keyword, and
the other usesthe WHILE keyword. To usethe SEQ keyword to loop, we combineit with an index
variable, asin this example:

SEQ i = 0 FOR 10
SEQ

J

1= 2
outl

i *
b
There are afew interesting things to note here. First, we don’t have to declare the variable 1 — in
fact thisisthe only case where we can use avariable in occam without declaring it first, and it’ snot
valid outside theloop. Thevalueof i will start at 0 and end up as9. Wedidn't haveto start at O; we
can start at any integer. Thereis no way to make i increment by more than one each time around,
so to get asequence0, 2, 4 etc. we had to multiply it by 2toyield 5. Note the second SEQ keyword.
This lets us use a sequence of lines in the loop; we could have omitted it if we only wanted to
execute one line repeatedly.

The other way to loop, using the WHILE keyword, isimplemented as follows:

running := TRUE
WHILE running
SEQ
in ? command
IF
command = quit
running := FALSE
TRUE

execute.command (command)

The WHILE keyword is used with a controlling boolean variable. In this example the loop will be
performed as long as the boolean running remains true. The only way for the loop to end isfor
amessage to arrive containing a quit command, so that running is changed to false. It’ s considered
bad form in occam to use the WHILE keyword with the keyword TRUE in place of a boolean
variable; the program will loop indefinitely with no way to exit, short of a complete crash of the
processor. Nonetheless we do exactly that in the majority of our programs! Each program has an

Printed December 7, 2012 18 NSPN22.00

initialization section followed by an endless loop where it sits and waits for host commands,
executing each in turn then going back to the head of the loop to wait for the next.

3.12 PLACE

The occam PLACE construct does just that — it places a variable at a particular location in the
memory space of the processor. Generally the actual location will be application-specific.

There are acouple of wayswe usethisfacility. Thefirst isthe one mentioned in section 3.7, where
thetransputer processor hasanumber of specific addressesthat arereserved for thingsliketheevent
port, allowing the high-level language access to hardware-level interrupt services.

The other useisto alow easy interfacing to memory-mapped hardware. For example:

[80] INT inbuffer
[80] INT newdata
PLACE inbuffer AT #400000

This tells occam that the zeroth element of array inbuf fer is at location 400000, in memory
(meanwhilenewdata isanarray in normal memory and wedon’t actually carewhereit’ slocated).
Thereisno real memory at address 400000,4, but instead a piece of hardware providing amemory-
mapped interfaceto somedatasource. Array inbuf fer isnot areal variablebut adummy pointing
at that location. If we need to read datafrom the hardware we simply assign the valuesin the dummy
array to another array, thus:

[newdata FROM 0 FOR 80] := [inbuffer FROM 0 FOR 80]

The FROM...FOR syntax effects a DMA transfer of ablock of values from one array to the other
(faster than an element by element copy in a loop). Like the ALT, PLACE is a very powerful
construct becauseit removesthe need for assembly language coding and keeps control of hardware-
level interfacing in the high-level language.

3.13 PRI PAR and PRI ALT

One of the difficulties with using parallel processes on the same processor is that sometimes we
would prefer one of the processes to have a bigger share of resources than another. The occam
scheduler will normally give equal shares of time to all processes, except that processes that are
stalled waiting for input from channels are de-scheduled. By replacing PAR with PRI PAR we can
have the processor prioritize execution of parallel streams. For instance if we have:

PRI PAR
SEQ
X =X + 1
Yy =y + X
chanl ! vy

Printed December 7, 2012 19 NSPN22.00

SEQ
Z =2z + Y

the second parallel stream will only be executed once the write of y to channel chan1 is either
complete, so ending the first stream, or the first stream hangs up for awhile because the receiving
process at the other end of chan1 isn't ready.

The transputer’ s on-chip scheduler has only two levels of priority, high and low, but the compiler
allowsusto list multiple streamsin the desired priority order and has amechanism for handling the
multiple priorities in software (shades of VMS for those who remember!).

In section 3.7, wherewe described the ALT construct, we said that the transputer acceptsinput from
whichever of the sourcesbeing monitored first receivesamessage. What happenswhen two sources
just happen to get amessage coming in on exactly the same clock cycle of the processor? The result
is described as “indeterminate”, which isn’'t exactly desirable. In some cases we would have a
preference as to which input would be serviced if this were to occur, and the PRI ALT construct
existsto deal with thissituation. If weuse PRI ALT inplaceof ALT, thentheorder inwhichwelist
the input options becomes significant. Thefirst onelisted will have higher priority than the second,
and so on. That means there is never any doubt as to which input will be read first should they
happen to coincide.

3.14 TIMER

One of the most useful features of the transputer-occam combination isthe TIMER. The transputer
hashardwaretimerswhich are accessiblefromthe high-level language. We can declareatimer, then
read avalue fromit asif it was a channel. The value returned is the current value in the hardware
timer, whichincrementsat fixed intervals. The datatype of thevaluereturned isINT, whichiseither
16 or 32 bits depending which type of processor we are using. Typical usage would be:

TIMER clock
INT t
SEQ

clock ? t

Integer t now containstheinstantaneousvalueof thetimer c¢1 ock. Thevalueof the hardware clock
iscyclic, sowhenit reachesthelargest positiveinteger valueit rollsover to the most negativeinteger
then increments though zero to the most positive integer again. Obviously when comparing times
we need to take thisinto account, just as we distinguish times on aregular clock. We know that 11
am isearlier than 1 pm, even though 1 islessthan 11.

It doesn’t do us much good just to know the value in the clock. However we can use the clock to
actually control the execution of our program, in a number of ways. First of all, we can make the

Printed December 7, 2012 20 NSPN22.00

program wait until a specific timer value comes up. To do this we add the keyword AFTER, as
follows:

TIMER clock
INT t
SEQ

t := X
clock ? AFTER t

Thisistill not very useful. The value we assigned to t isn’t referenced to anything in the outside
world or to any other event. However if AFTER is used in conjunction with the modulo operator
PLUS, then it can provide atime delay, asin the following example:

TIMER clock
INT t

INT delay :
SEQ

delay := 100
clock ? t
clock ? AFTER t PLUS delay

Thefirst read of the clock assignsthe current clock valueto variable t. The second clock read hangs
up until the clock count has reached thevaluet PLUS delay. Weuse PLUSto add delay to t
because the PLUS operator takes care of the clock rolling over. An analogy would be setting our
kitchen timer at 11 o’ clock so it will go off at 1 o’ clock. We know that requires a2 hour delay. The
limitation isthat delay must be less than a clock cycle.

If we put this construct in aloop we can have a program that does something at regular intervals:

delay := 100
clock ? t
WHILE looping
SEQ
t := t PLUS delay
clock ? AFTER t
do.something ()

This code will execute the process do . something every 100 ticks of the hardware clock. Once

we have taken the first clock value, we increment t each time around the loop. Because we use
PLUS to do that, the value will constantly roll over aslong as the loop continues.

Printed December 7, 2012 21 NSPN22.00

We keep talking about the clock value without saying what theincrement (“tick”) is. There aretwo
possible values, 1 microsecond or 64 microseconds. If a processis running at high priority it has
accessto thefaster tick, otherwiseatick is64 us. To see how to place aprocessat high priority, see
section 7.5.

The most common use of the time delay facility in our programs s to time integrations in the two
camera sections, as in the following code section:

clock ? time.now -- store current time
global.reset () -- reset the array

loadwave (read) -- get ready to read frame
clock ? AFTER time.now PLUS itime.spec.ticks -- wait itime
clockwave (read) -- read out the array
coadd.num := coadd.num + 1 -- keep a count of coadds

Note that during the delay (between the two clock reads) we can perform whatever operations we
need to do. Wewill only interfere with the accuracy of thetiming if those operations aren’t done by
the time the timer is due to expire. In this case we have calibrated the time taken for the
global.reset and loadwave operations, and set a minimum alowable value for the
integrationtime, itime.spec.ticks.

Another way to use atimer isin measuring the time taken for a series of operations, as follows:

TIMER clock
INT timel :
INT time2 :
INT delay :
SEQ
clock ? timel
-- operations to be timed

clock ? time2
delay := time2 MINUS timel
to.host ! delay

Herewe take two time readings, before and after the operationswe want to calibrate. We difference
them using the MINUS operator, which like PLUS can deal with the clock rolling over between the
tworeads (and like PLUSislimited to atotal delay of oneclock cycle). Oncewe havethedelay time
we send it back to the host computer. This facility is extremely useful in measuring real-world
timings.

Another use of atimer isasone of theinputsto an ALT construct. Recall that reading a clock looks
just like reading a message from a channel, and in fact it can be inserted in place of achannel asa
guard to one of the options. We can usethisto prevent aprogram from becoming compl etely stalled
when some piece of hardware doesn’t respond, or to combine some operation we want performed
at fixed intervals with an interactive section of code.

Printed December 7, 2012 22 NSPN22.00

The following example shows how to implement a timeout on an input or output operation, thus:

clock ? t
ALT
from.host ? command
parse.command ()
clock ? AFTER t PLUS timeout
SKIP

The ALT will wait until either some input arrives on the channel £rom. host (in which case it
executesthe processparse . command) or the delay set by thevalue of t imeout expires. Inthe
latter case nothing happensthanksto the SKIPkeyword, whichistherejust because we haveto have
some code in each option of the AL T, but the ALT comesto an end.

Both our clock generator transputersusea TIMER inan AL T to implement a periodic erase of the
IR detectors. The ALT is nested in aloop, so the program is always waiting for host commands,
executing each as it arrives. If no command comes in for 5 seconds, the timeout expires and the
program sends out an erase frame to the detector.

4 | nter-process communications
4.1 Hardwarelinks

The hardware links are ssmple TTL point-to-point connections that can only run over afew feet of
twisted-pair cable (they are not RS232 or any similar convention). Various commercia solutions
exist to solvethe problem of talking over longer distances. Assembling asystem of transputersislike
doing organic chemistry: the four links of the transputers correspond to the four covalent bonds of
a carbon atom!

Linked processors Pipeline

: L]

Tl E i e ol

Tree Grid

Figure 2 Transputer connections

Printed December 7, 2012 23 NSPN22.00

4.2 Softwar e channels

We can declare achannel over each of the hardwarelinks, aswell as between processes on the same
processor. Thechannelswhichrunover hard linksaredeclared inthe configurationfile, intheform:

CHAN OF prot chanl
CHAN OF prot chan2

wherechanl and chan2 arethenamesof channels, and prot isaprotocol which hasalready been
declared. For very simple message passing we can also use

CHAN OF INT chan :

to declare a channel which will always send or receive messages consisting of asingleinteger (we
could also use BYTE).

If we have two separate programs running on the same transputer, the channels are declared in the
same way in the configuration file. If we have achannel that links two parallel code streamsin the
same program, we simply declare it (in the same format) along with the variables of the program.

T1 T2
c1
ca
| c6
c3
c7
c2]
e o

Thisdiagramillustratesthe different connections channel s can make between processes. Transputer
T1 has 2 processes, P1 and P2, while T2 runs a single process, P3. Channel C3 allows P1 to send
messages to P2. P1 can also talk to P3 via C4, and P2 can receive from P3 via C5. C4 and C5 are
defined to run across aphysical link whereas C3isavirtua link. C1 and C2 connect P1 and P2 to
some other process off-page, while C6 and C7 also connect C3 to some other transputer.

I’ simportant to remember that each channel runsin onedirection, whileeach link (4 per processor)
isbidirectional and so can carry two channels. That means a process that runs alone on atransputer
could have asmany as 8 channelsall connecting it to processes on other chips. Of courseif we have
multiple processes on achip, thereisno limit to how many virtual linkswe can have between them.
Also there is no need to declare channels on every link of atransputer, or even both directions of a
particular link. In fact we have a couple of links in our system that only carry messages in one
direction.

Printed December 7, 2012 24 NSPN22.00

4.3 Protocols

We have to define how information passed over each channel is to be formatted by declaring a
protocol. Every message that is sent over alink has to be sent in arecognized protocol, which has
been named in the declaration of that link. That may sound restrictive, but in fact a protocol can
consist of a list of different protocols for different types of messages. There's also a standard
protocol called ANY, which means no protocol at all. ANY works fine aslong as both sending and
receiving processes expect to send and receive the same set sequence of bytes, integersetc. Thisis
fraught with danger, so the ANY protocol has now been made obsolete and generates compiler
warnings! A simple protocol might look like:

PROTOCOL CHAR IS BYTE

This means each message will consist of asingle item, a byte. We can aso have a protocol which
is a sequence of different items, such as:

PROTOCOL MSG IS BYTE; INT :

Thereis aso away to declare a protocol which will pass variable length messages:
PROTOCOL DATA IS INT::[]INT :

The syntax with the two colons and the empty square brackets denote an integer, followed by an
integer array, with the length of the array defined by the first integer. Obviously thisis most useful
for transferring data packets.

To send using the three example protocols above, we would use:

out ! x
out ! x; vy
out ! y; z::array

whereout isachannel, x isabyte, y aninteger, z aninteger and array aninteger array, of which
z elements will be sent.

What if we want to be able to send messages of different formats over the same channel? Each
channel is specified to have a single protocol, but fortunately a protocol can be specified with
multiple formats, using the CASE keyword. If we combine the two previous examples, we get the
following protocol declaration taken directly from the NIRSPEC code:

PROTOCOL TRANS2TRANS

CASE
msg; BYTE; INT :
data; INT; INT::[]INT :

Printed December 7, 2012 25 NSPN22.00

Asthenameimplies, thisisthe protocol used between al the transputersin the NIRSPEC network.
When we combine protocolslikethis, we haveto give thetwo formats separate names, herewe have
msg for messages, and data for data transfer. Our example has only two formats but you can
specify as many asyou like.

When sending a message over a link with a multiple protocol, the lines of code performing the
message send and receive must include the name of the optional format used. For instance in the
acquisition transputer code you can find the following line:

out ! data; tnum; 65536::frame -- send out frame data

Thissendsinformation over channel out usingthe data format. Thefirst element isjust theword
“data”, the label denoting which of the two formats we are using, followed by tnum, the
transputer number (so the host knows which part of the frame thisis). The number 65536 defines
how many elements of the array frame will follow. Obviously the message must be formatted
properly for the format named, or we will generate acompiler error. For instance t num can not be
of type BYTE.

What about reading in viaamultiple-format protocol ? If the receiving processis sure which type of
message is coming next, then it can read the message in that format by likewise including the
appropriate protocol name:

in ? data; tnum; framesize::frame -- read in frame data

However a receiving process might have to deal with messages in either form coming in. For
instance the root transputer of the network takes repliesin msg format and data packets in the data
format. Thisis dealt with, again using the CASE keyword, as follows:

in ? CASE
msg; cid; param
SEQ
out ! msg; cid; param
data; tnum; frame.size::frame
SEQ
out ! data; tnum; frame.size::frame

Soinstead of reading in with aspecific protocol name after the“?’, we have CASE. Following each
possibleinput format isasequence of codethat’ sonly performed if the message coming in satisfies
that format. The meaning of this construct is“read amessage, and if it’sin one format do this, and
if it'sin the other format do this’. This piece of example code simply reads messages then passes
them along on another channel, whichever form they take.

More details of our transputer network implementation are given in NSPN21, and also in the
documents on each specific transputer (root, clocking, motor control etc.).

Printed December 7, 2012 26 NSPN22.00

5 Host-transputer communications

The hardware connection to the transputers from the host Sparcstation isthrough adevice caled a
Matchbox, made by Transtech. This device contains atransputer running code stored in ROM, and
provides a bridge between the Sparcstation’s external SCSI port on one side and the transputer
network on the other. (Fiber-optic extendersstretch the SCSI to bridge the distance between the host
and the instrument.) Thereisalibrary of code for the host side provided with the Matchbox, so the
Sparcstation can download and run the bootable occam code, then send and receive messages and
data across the link provided by the Matchbox.

Asfar asthetransputersare concerned, thiscombinationlooksjust like another transputer connected
to onelink of theroot transputer. The protocol running over that link however isdifferent from that
used between all the other transputers (examples in section 4.3). The protocol declaration is

PROTOCOL TRANS2HOST IS INT16::[]BYTE

This means a 16-hit integer arrives first, informing the receiver of the size of an array of bytesto
follow. Thisisnot our choice but mandated by the requirements of the host software package. The
root transputer hasto do some unpacking and re-packing of messages and data between thisformat
and the protocol we use everywhere else, but that is the only overhead.

For amore comprehensive description of host-transputer communication, see NSPNOS.
6 Interfacingtotheoutsideworld

Thereareacouple of waysof interfacing atransputer systemto the outsideworld in order todoreal -
time control and monitoring. Thefirst isto use the CO11 support chip, which provides an interface
between a transputer serial link and 8 bits of parallel 1/0. The CO11 chip has handshake lines for
coordinating the 1/0 at the parallel side. On the serial side it looks to atransputer just like another
transputer, so in the code we would just use channel communication to talk to or receive fromit.
However thismethod islimited to 20 Mbit/sthroughput, andit’ sal so awkward to coordinatereading
in datathat comesasmorethan 8 bits. Y ou either haveto serialize successive bytesof your datainto
one CO11 or use severa side by side, with attending synchronization problems.

If we want higher throughput we need to forget that it’s a transputer we' re using and memory-map
the 1/0O just as we would with any other processor. This is the method used in the DAQ15 and
DAQ17 boards built for us by DSP systems. Using programmabl e gate arrays the various |/O ports
and their control and status registers are mapped in hardware to specific memory locations. The
occam PLACE construct (section 3.12) is particularly useful when we do this. By declaring an
integer and then using PLACE to tell the compiler whereit islocated in memory space, we can read
or write aregister by ssimply copying itsvalue or assigning it anew value. We can also makean 1/0
port look like ablock of memory locations by declaring an array and using PLACE to placeit at the
location of the port. That allows usto use DMA transfers to grab data from the port and transfer it

Printed December 7, 2012 27 NSPN22.00

straight to another array in real memory. It’s not an exaggeration to say that the use of memory-
mapped /O isalmost asimportant asthe parallelism/link setup in making the transputer systemswe
have used a success.

One part of the transputer standards we haven’t mentioned before is the TRAM, or TRansputer
Application Module. This allows vendors to package transputers with some kind of standard 1/0
such as RS232 or SCSI in a standard daughtercard format. Vendors aso supply motherboards for
PC or VME busto hold anumber of these modules. Usually the transputersonaTRAM have ROM
code and/or drivers that allow the purchaser to program the particular interface easily.

The RS232 communication between the transputers and the controllable power strip and the
L akeShore temperature controllers/readouts is performed by a couple of TRAMS, each giving us 2
channels of RS232 1/0.

7 Development tools and program building
7.1 Toolsoverview

Souree The tools we use to generate the code that runs on
code the transputers are supplied by SGS-Thomson, and
are collectively known as the occam toolset. There
areawhole set of manualsfor thistoolset, giving the
details of the various options, and another
document, NSPN 26, giving particulars of our setup,
C°f:§“ef so | will just give an outline here. The main thing to
know isthat the occam source code is stored on the

host computer, and from it the executable code is
generated using the facilities of thetoolset. Thereis
no operating system or even disk storage on the

Linker transputers. When they power up they have no code
ilink to run, until the host downloads the executable file
over thelink.

7.2 Source code and version control

Configur-
ation
source

Configurer Collector
occonf icollect

Source code is stored in the nirspec computer in
directory /kroot/kss/nirspec/keyword/transputer and
its subdirectories. The code for each transputer (the
file extension is .occ) resides, with itsinclude files
Boztlzb'e (extension .inc), in a separate subdirectory. There

are a number of old versions of each module in its

directory. The base module hasno number whilethe
Figure 4 Program build model

Printed December 7, 2012 28 NSPN22.00

consecutive sersions are numbered So for instance the root
transputer code is root.occ, while successive versions are

transputer

root root01.occ, root02.occ etc. To compile with a new version
one copies the new module to root.occ, overwriting it but
spec clock Kkeeping the previous version in its own file. At alater date

this all needs to be merged with CVS.

L daq

7.3 Compiling

scam clock

The occam compiler program is called oc. If you are logged
in as nirspec, you can run this (and any of the other tools)
from any directory. To compile a module one would type

L daq

motor

ceria OC progname.occ
Figure 5 Development directories Thereare anumber of occam compiler flags; -h givesashort

list and -help gives a full list. The most useful one is -c
(check) which checks the code syntax but doesn’t produce any output. In the latest version of the
compiler, it iscompulsory to use -t805 or -t225, which specify which type of processor the codeis
to run on (there are other types but not in our system).

Also useful are anumber of flags which turn off various warning-level compiler messages, so you
only get screen output for actual errors. There' seven a-wqual option, which gives you a bunch of
criticisms of your coding style (mostly omission of TRUE...SKIP at the end of an |F — see section
3.9).

7.4 Linking

The linker is called ilink, and combines the compiler output files with extension .tco with any
necessary library code (.lib files).

7.5 Configuration

The configuration process is performed by the program occonf, and takes as input a file with
extension .pgm. Thisfile contains:

* alist of all the transputersin the network (including processor type and available RAM)
* alist of how they are all linked together physically

* alisting of the linked software modules to be used

» declarations of all the link protocols

* alist of which programs are to be placed on each transputer in the network.

Printed December 7, 2012 29 NSPN22.00

All these assorted pieces of information are checked for consistency. For instance if the .pgm file
places a program on a processor and list it as having two 1/0 channels, then the occam code aso
ought to declaretwo channels. In particul ar the rules about processesin parallel both using the same
channel are enforced (section 3.6).

Herewe also take care of specifying which processesaretorun at high priority. Wedo thisusing the
PRI PAR construct, asin this example:

PROCESSOR spec.clock
PRI PAR
SEQ
specclock (...channel declarations...)
SEQ
SKIP

The PRI PAR construct puts parallel processesat different priorities. Herewe put the specclock
process in parallel with nothing at all (signified by SKIP) just so it will have access to the high
priority (1 microsecond per tick) clock.

The output file from this process (extension .cfb) is used in the next stage by icollect, so it knows
how to combine all the codes for the different transputers into one bootable file.

7.6 Generating the executablefile

The final stage in program building is running the icollect program, which collects together the
linked code and combines it according to instructions in the output from the occonf program. The
final output of the whole build processis afile with extension .btl. Thisisthe bootable file which
can be sent down the link to the transputer network.

7.7 Loading and running

Therearetwo different waysto run an occam program. We can use aprogram called iser ver, which
runs on the host, downloads the bootabl e file to the transputers, and talks to the transputers over the
link, or use alibrary of supplied routines to download and communicate from within our own C
program (the server).

In order to use iserver the occam code needs to use routines from a host 1/0 library, since iserver
treats the host computer as a set of peripherals — keyboard, screen and filestore. However that
restrictsyou to avery ssimpleinterface on the host end (basically an ANSI terminal), and you can’t
then combine the transputers with other facilitiessuch asIDL or DataViews, so we abandoned use
of iserver many years ago. The only thing we kept was the iser ver command format, consisting of
abytecommandid and aninteger parameter. Thismakesthewhol e occam software system keyword
based, just like the host code.

Printed December 7, 2012 30 NSPN22.00

The routines used to connect the C code in the server to the occam code are actually supplied with
the Matchbox, replacing those with the toolset. The toolset routines only work with transputers
plugged into the VME backplane on the older Suns (or the AT bus in the PC version). Transtech
wrote abunch of corresponding routineswhich can operate through the SCSI busand the M atchbox.
Use of these routines is described more fully in NSPNOS.

7.8 Utilities

Thereisauseful set of utilities supplied with the Matchbox to allow you to troubleshoot hardware
inthetransputer network. Thesearecheck, ftest and mtest. check sendsapiece of probe code down
thelink and findswhatever processorsare there and how they’ relinked together (obviously you can
then see whether any processorsor links are missing, compared to what you thought you built!) . To
check that each processor is healthy, you can pipe the output of check to ftest, which then sendsa
test program to each processor. You get a listing similar to check, but with “OK” opposite each
processor if it passesthetests. If you use check | mtest, you get another similar listing but thistime
the memory of each transputer islisted.

Printed December 7, 2012 31 NSPN22.00

