
Printed November 28, 2012 1 NSPN1800

Trans FIFO

Repeat count

Direct register

Output
connector

Clock
Control

logic

output
clock

statusstatus &
interrupts

commands

Figure 1: DAQ17 clock generation block diagram.

NIRSPEC
UCLA Astrophysics Program U.C. Berkeley W.M.Keck Observatory

George Brims Revised February 18, 1999

NIRSPEC Software Programming Note 18.00
Clock generator programs

1 Introduction

This note describes the two programs which run on DAQ17 boards and clock out the two infrared
detector arrays in NIRSPEC. The two arrays are completely different in terms of their clocking
patterns, but otherwise the two programs are pretty much the same. As well as handling clock
generation, both programs control the analog chains' gain and filter bandwidths and analog offsets,
and also, in the spectrometer channel only, the detector bias.

During the acquisition of a frame, the clock generator programs interact in various ways with the
acquisition code in the DAQ15 boards. This process is explained in NSPN33, and the acquisition
code in NSPN19.

2 Hardware description

The DAQ17 board is more fully described in NEAN05, but I will give the programmer's view of it
here. The board has one T805 transputer and 4 MBytes of memory. Via firmware, the transputer sees
the outside world as a selection of registers where output data are loaded and input data read back.

Printed November 28, 2012 2 NSPN1800

Clock waveforms are generated by writing a series of 32-bit words to a parallel output-only port.
There are two registers feeding data to the port, as well as various control registers. Most of the clock
pattern is sent out through a register which feeds a first-in-first-out (FIFO) buffer, 32 bits wide by
16384 deep. The transputer loads a sub-section of the waveform into the FIFO register and a repeat
count into another register, then writes to a control register to command the hardware to send the
data out. The contents of the FIFO buffer are then sent out the number of times specified in the
repeat count register. This scheme takes advantage of the repetitive nature of the patterns required
by the IR arrays to simplify programming. The timing of the clock output is set completely by
hardware, and can be much faster than the transputer itself can generate, as long as the waveform is
composed and loaded into the FIFO buffer in advance.

As well as the repeated part, the arrays always require some clock pulses at the start of the waveform,
and sometimes a sequence at the end. In this case output is sent word by word through the other
register that feeds the same physical connectors. The start and end sequences are usually short and
don't need to be very fast, so it doesn't matter that writing out this way is a bit slower (approx 320ns
per time interval rather than 200ns through the FIFO buffer).

Most lines of the waveform go from the board’s front panel connectors to the level shifter board,
with two exceptions. Two lines are split off to a pair of BNC connectors and fed to the interface
board in the analog crate. These are the convert signal for the A-D converters, and the select
signal. There are two A-Ds on each analog board, but just one output connector. select (a level
rather than a pulse) determines which A-D output is seen at the connector (to be read by the
acquisition boards). Eight of the clock output lines are also copied to pins on the VME bus
connector. We use one of these lines to send the read.data clock pulse to the acquisition boards,
which tells them to read in the next set of pixel values from the A-Ds.

The DAQ17 boards also have four other (bi-directional) ports, most often used for driving motors
and reading limit switches. When we use the boards for clocking arrays we use one of these ports
to send data to serial D-A converters in the analog hardware. The DACs set the analog offset
voltages for the pre-amps in both cameras, and also control the detector bias for the Aladdin array
of the spectrometer channel. We use another port to control the selectable gain and filter bandwidth
on the analog boards (there are 4 choices for each, so we use 4 bits in total). The gain/bandwidth
settings and offset voltages are never changed during an integration.

Printed November 28, 2012 3 NSPN1800

3 Program structure

The overall structure of the clock generator programs is simple. They are one-process programs (no
parallel operations) which sit in an event loop waiting for commands from the host, then perform
the requested functions. They use three of their four serial links: one for talking to the host (via the
root transputer), and the other two to talk to the acquisition transputers. In each camera section the
clock generator and acquisition transputers are connected in a loop. During the clocking and
acquisition of a frame, each acquisition transputer passes a message along in the same direction. The
message will eventually come back to the clock generator to let it know that all the acquisition
transputers are ready for the next step in the data-taking process.

The main loop of the program is headed by an ALT statement. Recall that an ALT is a construct that
lets a transputer efficiently handle multiple events. There are four possible inputs to this ALT; three
inputs on the serial links, and a clock input. Three of these cases are very simple. When the clock
input triggers at set intervals, the code does a reset of the detector array, so that it doesn't build up
any persistent charge during periods when the instrument is idle. Handling any input (message or
data) from the acquisition transputers is simple: everything is simply passed on to the host via the
root transputer.

The input to the ALT that causes the clock generator to do the most work is the link from the root
transputer. Any message coming in from the root transputer will be a command from the host, so it
is passed to a CASE statement which decides what to do with it. Most command identifiers (cid's)
simply order a change in the value of some program variable such as the sampling mode or
integration time. If the command identifier is a “go” message, the data acquisition process will start.
A few other cid's command other code sequences such as generating test output. The response to
each cid is listed in the next section.

Printed November 28, 2012 4 NSPN1800

4 Response to commands

This section describes what the program does in response to each possible cid value. Any cid value
not listed has reached the clock generator transputer by mistake, and will be ignored. The CASE
statement that handles the cid's lists them in random order, rather than alphabetical by name or
numeric as listed in the main include file nirspec.inc, and I've kept to the same random order here
so it's easier to follow through the code.

4.1 cid.test

This cid is used as a probe of the transputer network. It is routed through the network according to
the value of its accompanying parameter value. If this value is 2 (SCAM) or 6 (spectrometer) the
message is echoed back to the host with 1000 added to the parameter. Otherwise it is passed on to
the acquisition transputers. See NSPN21 for an explanation of the use of this command.

4.2 cid.set.gain.spec / cid.set.gain.scam

This command orders a change in the analog chain's gain setting. Gain and bandwidth control bits
are combined in a word called aux.data. The control bits for the gain setting are cleared, then the
word is OR'ed with the bitmask for the requested gain setting. Finally aux.data is written to motor
port 0. The command parameter can be 1, 2, 3, or 4, but these are not the actual values of the gain
selected, just the number of the section of hardware that sets it.

4.3 cid.set.freq.spec / cid.set.freq.scam

This command orders a change in the analog chain's filter setting. Gain and bandwidth control bits
are combined in a word called aux.data. The control bits for the bandwidth setting are cleared,
then the word is OR'ed with the bitmask for the requested setting. Finally aux.data is written to
motor port 0. The command parameter can be 1, 2, 3, or 4 to select different cutoff frequencies for
the highpass filter stage of the analog chain.

4.4 cid.fifo.test.spec / cid.fifo.test.scam

This command exercises the clock output hardware and also puts out a pattern that can be used to
test signal continuity in the hardware. It illustrates in a compressed fashion everything that goes on
in routines makewave, loadwave and clockwave (see below in Section 5). It also illustrates
how to address the memory-mapped hardware. To send a piece of data out to the hardware you just
assign its value to a memory-mapped variable. For instance the FIFO buffer is addressed through
variable Fifo32bit. This is actually declared as an array of 16484 32-bit words, so that we can
send data to it using a DMA transfer. Obviously we limit the size of the declared array to the actual
size of the FIFO buffer, and the physical addresses for the different variables are far enough apart
that we don't overwrite another one by doing so. The names of many of the variables include things

Printed November 28, 2012 5 NSPN1800

like “HL” or “32bit”. These are used because the clock output hardware is actually split into two 16-
bit subsystems, which can be used either separately or in sync. We always use them synchronized,
as indicated by these variable names. The “H” and “L” indicate high and low words, so there are
registers with “H”, “L” for the separate halves. The nomenclature “32bit” means using all 32 bits of
the port.

First the FIFO buffer is cleared by writing a zero (actually any value will do) to register nFifoRst,
then a loop inserts a sequence of ascending words (1, 2, 4, 8...) into the FIFO buffer through
memory-mapped variable Fifo32bit[0]. This will have the effect of sending out pulses on each
clock line in turn from LSB to MSB as the words are clocked out. The value of the command
parameter is loaded into the repeat count register. The hardware limit on repetitions is 4096 so the
value is trimmed if it's bigger. This emulates what happens in makewave, which composes
waveforms, and loadwave, which puts it in the FIFO buffer and loads the repeat count.. The FIFO
buffer is now ready to send out the loaded data, but first, just as in a real array waveform, it sends
out some data via the direct register (recall that data written to either register ends up at the same
hardware output port).

The code now sets output mode to the direct (non-repeating) register by writing value registerHL
to control register OutputMode, then goes into a loop where it repeatedly writes a sequence of
pulses to the direct register. Again the command parameter value is used as a repeat count. The bit
pattern is all bits off, all bits on, then all bits off again. This is written to memory-mapped variable
DirectBoth[0]. This output will appear at the connector as it is written by the code.

Next output mode is switched to the FIFO buffer by writing value fifoHL to register
OutputMode. Writing the value Common to register FifoControl makes the upper and lower
sections of the output hardware work together, and the repeat count is written into both the upper and
lower halves of register Repeat. Output is triggered by writing the value runHL to the control
register Go. This sets the hardware running to write out the contents of the FIFO buffer the requested
number of times.

Now although the FIFO clock output is now entirely in the hands of the hardware, the code has to
wait until it is done before doing anything else, so it goes into a loop where it waits for a series of
interrupts, one for each time the hardware triggers the re-transmit of the FIFO. This will occur after
each output is complete, except for the last time, so the loop count is one less than the repeat count.
First any prior interrupts are cleared by writing a zero to the interrupt control register int.enable,
then RetransL is written to the same register to specify that the retransmit is the interrupt we want.
Writing master.int.en to the interrupt master control register sets up the interrupt. The code
now waits until a byte is available through the dummy input channel event. This channel returns
an input when the hardware toggles the hardware event line to the transputer. After triggering on the
retransmit the appropriate number of times, the code sets up and triggers on the FIFO done interrupt
(DMAdoneHL), which indicates the last output is complete. The code then writes the StopHL value
to the Go register.

Printed November 28, 2012 6 NSPN1800

Finally the code repeats the loop where it sends bits to the output through the direct output register,
and sends the command and its (possibly clipped) parameter back to the host.

The net effect of all this, if you look at any one output bit on a scope, is 3n pulses, where n is the
repeat count you requested with the command. The first n and last n will be the same equally spaced
output for every bit, and the n in the middle will also be equally spaced but start earlier for the least
significant bits and later for the most significant.

4.5 cid.test.frames.spec / cid.test.frames.scam

This command triggers another test mode for clocking. In many ways it is more useful than the
previous one, since it puts out the actual array clocking waveforms, and can go on for a long time.
The code executes a loop, sending out the read waveform once every half second. The repeat count
is the parameter sent with the cid.

4.6 cid.go.spec / cid.go.scam

This is of course the most important command of all, triggering the code to take data. The process
of taking data is described in much more detail in NSPN33. In that document the coordination
between the clock generator and data acquisition transputers is described in depth. Here I will just
describe what goes on in the clock programs, with brief mention here and there of what the
acquisition transputers do.

When the clock generator gets the go command, it sets a couple of values (coadd.num = 0 and
not.abort = TRUE), then passes the command on to the first acquisition transputer, which passes
it on down the chain of acquisition transputers to the last one. The clock generator then does a CASE
on the value of sampmode, and goes into the appropriate code section for the current sampling
mode.

In each type of sampling there is a period during each co-add when the clock generator is idle,
waiting for the integration time to expire. During this period it is also open to receiving messages
from the host. Only one command identifier will have any effect — the abort message — while
anything else is read and discarded. If the abort message is received it is passed to the acquisition
transputers, which then discard their data and abandon the observation too.

I will describe each data-taking mode separately. Each mode is a little more complex than the last
so it's probably a good idea to read them in order.

4.6.1 Single sampling

On entering the code section for single sampling, the clock generator enters a WHILE loop. It will
execute this loop once for each co-add, incrementing coadd.num each time. There are two ways

Printed November 28, 2012 7 NSPN1800

for the program to exit this loop. The usual way is for it to complete the requested number of co-adds
(coadds.spec) and end the observation. Occasionally it will exit because the flag not.abort
has been set false by an abort message from the host arriving during the integration time.

4.6.1.1 Normal completion

Each time it starts its co-adding loop, the clock generator sends a message to the acquisition
transputers, with command identifier cid.daq.integ.start.spec. This is the command that
tells the acquisition transputers that another co-add is to start, so they should expect data. The
acquisition transputers are waiting at the top of their loop for any incoming message. When a
message arrives, each one passes it on to the next, so it ends up back at the clock generator (input
on channel loop.back).

Once the integ.start command has passed from the last acquisition transputer to the clock
generator, the clock generator now knows that all the acquisition transputers are ready for data, so
it can start the co-add. It takes a time-stamp from the on-chip clock, and clears the detector array
using routine global.reset (reset on the SCAM). It then waits for the integration time to
expire. Since during the integration time the clock generator is sitting idle, it is here we allow
messages from the host to interrupt the flow. We use the Occam ALT construct to handle this
situation. The ALT allows the clock generator to sit idle and wait for input from either the time
expiring or a message arriving. (We will talk about what happens when a message arrives in the next
subsection).

Once the integration time expires, the clock generator calls routine clockwave to generate the
readout clock pattern. This clocks through the array, selecting the pixels in sequence, and latches a
stream of pixels into the acquisition transputers’ FIFO input buffers. The acquisition transputers
receive the pixels and co-add them into their frame buffers, then wait for another command. Finally
the clock generator increments its counter coadd.num.

This whole sequence will repeat until the clock generator has counted up the right number of co-adds
(coadd.num equals coadd.spec). It then exits its co-adding loop. Once out of the loop it checks
whether not.abort is true. If it is, meaning the coadd loop ended normally, it sends command
cid.daq.integ.end.spec to the acquisition transputers and waits for it to be passed back.
On receiving the integ.end command, each acquisition transputer passes it on to the next, and
so back to the clock generator. Once the clock generator gets this acknowledgment it has completed
all it will do for this frame, and goes back to its main program section where it idles waiting for
messages from the host or messages or data from the acquisition transputers. The data from the
frame it just clocked out aren’t passed back to the host until it gets back to this main loop, and the
acquisition transputers send their data through.

Printed November 28, 2012 8 NSPN1800

4.6.1.2 Abort

If the host sends an abort command during an integration, it will be received by the clock generator
during the idle period of the integration between resetting the array and clocking out the data. If that
happens, the clock generator has to do a couple of things. It can't just pass the message straight on
to the acquisition transputers, since at this point they are expecting data, so first it clocks the array
so that the acquisition transputers will complete the current co-add and go back to listening for
messages. It doesn't matter that this is done before the end of the allotted integration time, since the
data will be trashed anyway. It then sets the flag not.abort to FALSE, so it will exit its own loop,
then acknowledges the abort message with an echo to the host. Once it has exited the co-adding loop,
it checks the value of not.abort. If it's false then it passes the message along to the acquisition
transputers and waits for the acknowledgment that they have all received it. When the acquisition
transputers get the abort message, each passes the message along to the next, then goes back to
waiting for a new go command, without sending any data back.

4.6.2 Double correlated sampling

On entering the code section for double correlated sampling, the clock generator enters a WHILE
loop. It will execute this loop once for each co-add, incrementing coadd.num each time. There are
two ways for the program to exit this loop. The usual way is for it to complete the requested number
of co-adds (coadds.spec) and end the observation. Occasionally it will exit because the flag
not.abort has been set false by an abort message from the host arriving during the integration
time.

4.6.2.1 Normal completion

Each time it starts its co-adding loop, the clock generator sends a message to the acquisition
transputers, with command identifier cid.daq.integ.start.spec. This is the command that
tells the acquisition transputers that another co-add is to start, so they should expect data. The
acquisition transputers are waiting at the top of their loop for any incoming message. When a
message arrives, each one passes it on to the next, so it ends up back at the clock generator (input
on channel loop.back).

Once the integ.start command has passed from the last acquisition transputer to the clock
generator, the clock generator now knows that all the acquisition transputers are ready for data, so
it can start the co-add. It takes a time-stamp from the on-chip clock, and clears the detector array
using routine global.reset (reset on the SCAM), then calls routine clockwave to generate
the readout clock pattern. This clocks through the array, selecting the pixels in sequence, and latches
a stream of pixels into the acquisition transputers’ FIFO input buffers. It then waits for the
integration time to expire. Since during the integration time the clock generator is sitting idle, it is
here we allow messages from the host to interrupt the flow. We use the Occam ALT construct to
handle this situation. The ALT allows the clock generator to sit idle and wait for input from either

Printed November 28, 2012 9 NSPN1800

the time expiring or a message arriving. (We will talk about what happens when a message arrives
in the next subsection).

Once the integration time expires, the clock generator calls routine clockwave to clock the array
again. The final data for each co-add is the difference between the pixel values in the two frames.
The acquisition transputers receive the pixels and co-add them into their frame buffers, then wait for
another command. Finally the clock generator increments its counter coadd.num.

This whole sequence will repeat until the clock generator has counted up the right number of co-adds
(coadd.num equals coadd.spec). It then exits its co-adding loop. Once out of the loop it checks
whether not.abort is true. If it is, meaning the coadd loop ended normally, it sends command
cid.daq.integ.end.spec to the acquisition transputers and waits for it to be passed back.
On receiving the integ.end command, each acquisition transputer passes it on to the next, and
so back to the clock generator. Once the clock generator gets this acknowledgment it has completed
all it will do for this frame, and goes back to its main program section where it idles waiting for
messages from the host or messages or data from the acquisition transputers. The data from the
frame it just clocked out aren’t passed back to the host until it gets back to this main loop, and the
acquisition transputers send their data through.

4.6.2.2 Abort

If the host sends an abort command during an integration, it will be received by the clock generator
during the idle period of the integration between clocking out the first and second sets of data. If that
happens, the clock generator has to do a couple of things. It can't just pass the message straight on
to the acquisition transputers, since at this point they are expecting data, so first it clocks the array
so that the acquisition transputers will complete the current co-add and go back to listening for
messages. It doesn't matter that this is done before the end of the allotted integration time, since the
data will be trashed anyway. It then sets the flag not.abort to FALSE, so it will exit its own loop,
then acknowledges the abort message with an echo to the host. Once it has exited the co-adding loop,
it checks the value of not.abort. If it's false then it passes the message along to the acquisition
transputers and waits for the acknowledgment that they have all received it. When the acquisition
transputers get the abort message, each passes the message along to the next, then goes back to
waiting for a new go command, without sending any data back.

4.6.3 Multiple correlated sampling

On entering the code section for multiple correlated sampling, the clock generator enters a WHILE
loop. It will execute this loop once for each co-add, incrementing coadd.num each time. There are
two ways for the program to exit this loop. The usual way is for it to complete the requested number
of co-adds (coadds.spec) and end the observation. Occasionally it will exit because the flag
not.abort has been set false by an abort message from the host arriving during the integration
time.

Printed November 28, 2012 10 NSPN1800

4.6.3.1 Normal completion

Each time it starts its co-adding loop, the clock generator sends a message to the acquisition
transputers, with command identifier cid.daq.integ.start.spec. This is the command that
tells the acquisition transputers that another co-add is to start, so they should expect data. The
acquisition transputers are waiting at the top of their loop for any incoming message. When a
message arrives, each one passes it on to the next, so it ends up back at the clock generator (input
on channel loop.back).

Once the integ.start command has passed from the last acquisition transputer to the clock
generator, the clock generator now knows that all the acquisition transputers are ready for data, so
it can start the co-add. It takes a time-stamp from the on-chip clock, and clears the detector array
using routine global.reset (reset on the SCAM). It now goes into a loop where it calls
routine clockwave to generate the readout clock pattern multiple times (control variable is
multi). This clocks through the array, selecting the pixels in sequence, and latches a stream of
pixels into the acquisition transputers’ FIFO input buffers. The acquisition transputers are ready for
this number of pixels because they too know the value of multi. The clock generator then waits
for the integration time to expire. Since during the integration time the clock generator is sitting idle,
it is here we allow messages from the host to interrupt the flow. We use the Occam ALT construct
to handle this situation. The ALT allows the clock generator to sit idle and wait for input from either
the time expiring or a message arriving. (We will talk about what happens when a message arrives
in the next subsection).

Once the integration time expires, the clock generator again loops around calling routine
clockwave to clock the array multi times. The final data for each co-add is the difference
between the totals of the pixel values in the two sets. The acquisition transputers receive the pixels
and co-add them into their frame buffers, then wait for another command. Finally the clock generator
increments its counter coadd.num.

This whole sequence will repeat until the clock generator has counted up the right number of co-adds
(coadd.num equals coadd.spec). It then exits its co-adding loop. Once out of the loop it checks
whether not.abort is true. If it is, meaning the coadd loop ended normally, it sends command
cid.daq.integ.end.spec to the acquisition transputers and waits for it to be passed back.
On receiving the integ.end command, each acquisition transputer passes it on to the next, and
so back to the clock generator. Once the clock generator gets this acknowledgment it has completed
all it will do for this frame, and goes back to its main program section where it idles waiting for
messages from the host or messages or data from the acquisition transputers. The data from the
frame it just clocked out aren’t passed back to the host until it gets back to this main loop, and the
acquisition transputers send their data through.

Printed November 28, 2012 11 NSPN1800

4.6.3.2 Abort

If the host sends an abort command during an integration, it will be received by the clock generator
during the idle period of the integration between clocking out the first and second sets of data. If that
happens, the clock generator has to do a couple of things. It can't just pass the message straight on
to the acquisition transputers, since at this point they are expecting data, so first it executes a loop
where it clocks the array multi times, so that the acquisition transputers will complete the current
co-add and go back to listening for messages. It doesn't matter that this is done before the end of the
allotted integration time, since the data will be trashed anyway. It then sets the flag not.abort to
FALSE, so it will exit its own loop, then acknowledges the abort message with an echo to the host.
Once it has exited the co-adding loop, it checks the value of not.abort. If it's false then it passes
the message along to the acquisition transputers and waits for the acknowledgment that they have
all received it. When the acquisition transputers get the abort message, each passes the message
along to the next, then goes back to waiting for a new go command, without sending any data back.

4.7 cid.itime.spec / cid.itime.scam

This command receives a new value of integration time from the host. The parameter gives the time
in milliseconds. This is converted to transputer clock ticks (microseconds).

4.8 cid.sampmode.spec / cid.sampmode.scam

This command gets a new value for the sampling mode. The possible values are single.samp,
correlated.double.samp and mult.corr.sample. The message is passed on to the
acquisition transputers, which also need to know the sampling mode.

4.9 cid.samprate.spec / cid.samprate.scam

This command sets the sampling rate for pixel clocking. It is specified in kHz. The maximum rate
the A-D converters can handle is 500 kHz. As soon as this new value is received, the program calls
routine makewave to compose new clock waveforms at this rate.

4.10 cid.coadds.spec / cid.coadds.scam

This command receives a new value for the number of coadds to be used in taking frames.

4.11 cid.multi.spec / cid.multi.scam

This command gets a new value for the number of samples to be taken in multiple correlated
sampling.

Printed November 28, 2012 12 NSPN1800

4.12 cid.quad1.offset.spec / cid.quad1.offset.scam

This command receives a value between 0 and 4095, which is sent using routine d2a.write to the
serial DAC in the interface board. If the value is out of range it is set to either 0 or 4095, depending
which end of the range it crossed. It sets the analog offset voltage for quadrant 1 of the detector. The
actual voltage produced is circuit dependent.

4.13 cid.quad2.offset.spec / cid.quad2.offset.scam

This command receives a value between 0 and 4095, which is sent using routine d2a.write to the
serial DAC in the interface board. If the value is out of range it is set to either 0 or 4095, depending
which end of the range it crossed. It sets the analog offset voltage for quadrant 2 of the detector. The
actual voltage produced is circuit dependent.

4.14 cid.quad3.offset.spec / cid.quad3.offset.scam

This command receives a value between 0 and 4095, which is sent using routine d2a.write to the
serial DAC in the interface board. If the value is out of range it is set to either 0 or 4095, depending
which end of the range it crossed. It sets the analog offset voltage for quadrant 3 of the detector. The
actual voltage produced is circuit dependent.

4.15 cid.quad4.offset.spec / cid.quad4.offset.scam

This command receives a value between 0 and 4095, which is sent using routine d2a.write to the
serial DAC in the interface board. If the value is out of range it is set to either 0 or 4095, depending
which end of the range it crossed. It sets the analog offset voltage for quadrant 4 of the detector. The
actual voltage produced is circuit dependent.

4.16 cid.detbias.spec

This command gets a new value for the spectrometer channel detector bias, and writes it using
routine detbias.write to a serial DAC in the interface board. As with the quadrant offsets, the
parameter value is between 0 and 4095. The SCAM detector bias is set in hardware.

Printed November 28, 2012 13 NSPN1800

5 Description of routines

The clock generator programs use a number of routines, which actually make up the bulk of the code
in terms of sheer line count.

5.1 makewave

Called as: PROC makewave(VAL INT wavetype, VAL INT rate, INT error)

This routine is used to compose in advance the waveforms that are sent out by routine clockwave.
Here we will describe the way the routine works, with the details of the actual waveforms given
below in Section 6.

There are two different types of waveform, reset and read, and each is made up of three separate
sequences. Arrays for storing these waveform sections are declared at the top of the main program.
The sizes of the arrays are defined in the include files scam_clockdefs.inc or spec_clockdefs.inc.

Each time makewave is called, it composes the initial sequence sent via the direct output register,
the sequence to be sent out via the repeating FIFO buffer, and the end of frame sequence that also
goes out via the direct register. In each case the data are composed and stored in temporary array
waveform.temp and copied to the storage array when complete.

Composing a waveform is very simple. There is a 32-bit integer called currentword which holds
the current state of all the output bits as we go through the sequence. Bits in currentword are set
or cleared using bitmasks named for each of the output lines, as defined in the include files. For
instance for the spectrometer channel (Aladdin array) the bitmask for PhiSyncSlow is 1, for
PhiSlow1 it's 2 and so on. If we do a bitwise OR of currentword with PhiSyncSlow, the
PhiSyncSlow bit will be turned on (the operation AND NOT will turn the same line off). We can
turn on or off as many lines as we want at any point in the waveform. To have this state of the output
lines last a certain number of output clock ticks, we copy currentword into the
waveform.temp array that number of times, keeping track of position within the array using
pointer pulse. This is all simplified by a number of short routines, on, off, tick, select.top
and select.bot, defined at the start of makewave. These are described below.

In a way these routines define a simple “language” for composing waveforms. Looking at the sample
section of code below along with the corresponding segment of the waveform, we can see how this
“language” operates.

Printed November 28, 2012 14 NSPN1800

 tick (1)
 on (lsync)
 on (read.enable)
 tick(1)
 off (lsync)
 tick(2)
 on (line)
 tick (1)

We start with all lines off, and do one time tick. We then turn on lines lsync and read.enable,
and do one more tick before turning lsync off again. We then do two ticks and turn on line, then
one more tick. If we wanted the lsync pulse to be one time slice longer, we would have typed

 on (lsync)
 on (read.enable)
 tick(2)
 off (lsync)
 tick (1)

Before going into the sequence of composing all the waveforms, there is a question of overall timing.
The minimum time slice available from the hardware is 200ns. For any sampling rate of the A-Ds,
there is a number of time slices that will comprise one pixel time (for example 10 or 20 slices for
500kHz or 250kHz). Once the waveform has selected each pixel, there is a fixed sequence we have
to perform, toggling the A-D convert signal and latching the data for the previous pixel into the
acquisition transputers. This sequence is only part of the total pixel time even if we're going at the
fastest rate possible (500kHz). The rest of the pixel time is defined by variable npause. To
calculate npause, we first figure out the number of ticks per pixel from the sample rate, then
subtract the length of the fixed part. Stretching npause makes the waveform longer and therefore
slower. There is a minimum value of npause which is set by the shortest possible pixel time of 10
ticks, and a maximum which is different for each type of waveform, but is set by the capacity of the
FIFO buffer. The whole repeating part of the waveform has to fit inside the 16384 deep buffer. The
slow speed limit is in the 80kHz range for both detectors, and is set as a limit on the value of the
sample rate keyword in the host software.

So, for each segment of the waveform we go through the sequence of on, off etc. as in the
examples above, then finally copy the temporary array to the array for that sequence. The length of
the data placed in the array is copied to array wave.length. Generally the start and end sequences
are pretty short, but the repeating section can be pretty long. For the repeating section we also store
the number of times it should be clock out in array wave.reps. Within the repeated section there
is still more repetition, which we implement by indexed loops just like any other repetitive task. The

Printed November 28, 2012 15 NSPN1800

advantage of our hardware-based clocking scheme is that there is no timing penalty in using loops
as there would be if we were to clock directly from the transputer.

5.2 on

Called as: PROC on (VAL INT line)

This routine turns on the bit specified by bitmask line in currentword.

5.3 off

Called as: PROC off (VAL INT line)

This routine turns off the bit specified by bitmask line in currentword.

5.4 tick

Called as: PROC tick (VAL INT nticks)

This routine puts nticks copies of currentword into the temporary array waveform.temp,
The pointer pulse is incremented by nticks.

5.5 select.top & select.bot

Called as: select.top() & select.bot()

In order to make the waveform slightly more readable, we added these two routines as a special case
of on and off. Each analog board has two A-D converters, feeding their data out over just one
connector. The select line controls which of the two A-D converters is seen at the output
connector, the top one or the bottom one. Rather than have the waveform-generating code read

select (on)
tick (1)
select (off)

it reads

select.top()
tick (1)
select.bot()

The readability of the code is improved slightly, in that one doesn't have to continually remember
whether it's on or off which means the top or bottom A-D is reading out.

Printed November 28, 2012 16 NSPN1800

5.6 loadwave

Called as: PROC loadwave (VAL INT wavetype)

This routine loads the stored data for the type of waveform defined by wavetype to the FIFO
output buffer in preparation for clocking out by clockwave. It stops FIFO output and clears the
FIFO first, then copies the data to the buffer. The nomenclature

[Fifo32bit FROM 0 FOR npulses] := [waveform.rep[wavetype] FROM 0 FOR npulses]

requests a DMA transfer of data from one location to another, so this operation is as swift as the
processor can manage.

5.7 clockwave

Called as: PROC clockwave(VAL INT wavetype)

This routine does the actual sending out of the data comprising the three parts of the waveform. To
send a piece of data out to the hardware the code assigns its value to a memory-mapped variable. For
instance the FIFO buffer is addressed through variable Fifo32bit. For each waveform type the
data are picked up from the storage array by their index (read or reset).

The code first sets output mode to the direct (non-repeating) register by writing value registerHL
to control register OutputMode, then copies the first sequence of pulses from waveform.start
to the direct register.

Next output is switched to the FIFO buffer is cleared by writing fifoHL to register OutputMode.
Writing the value Common to register FifoControl makes the upper and lower sections of the
output hardware work together. The stored repeat count for this waveform is copied from
wave.reps into both the upper and lower halves of register Repeat. Output is triggered by
writing the value runHL to the control register Go. This sets the hardware running to write out the
contents of the FIFO buffer the requested number of times.

Now although the FIFO clock output is now entirely in the hands of the hardware, the code has to
wait until it is done before doing anything else, so it goes into a loop where it waits for a series of
interrupts, one for each time the hardware triggers the re-transmit of the FIFO. This will occur after
each output is complete, except for the last time, so the loop count is one less than the repeat count.
First any prior interrupts are cleared by writing a zero to the interrupt control register int.enable,
then RetransL is written to the same register to specify that the retransmit is the interrupt we want.
Writing master.int.en to the interrupt master control register sets up the interrupt. The code
now waits until a byte is available through the dummy input channel event. This channel returns
an input when the hardware toggles the hardware event line to the transputer. After triggering on the
retransmit the appropriate number of times, the code sets up and triggers on the FIFO done interrupt

Printed November 28, 2012 17 NSPN1800

(DMAdoneHL), which indicates the last output is complete. The code then writes the StopHL value
to the Go register.

Finally the code switches back to writing through the direct output register, and sends the end
sequence from waveform.end.

5.8 undeselect

Called as: PROC undeselect ()

This routine is used in the spectrometer channel only. The Aladdin 2 array has a facility that allows
you to turn off (“deselect”) one or more row pairs which have defective pixels, particularly if they
are hot pixels which impact the background on the rest of the array by emitting photons. When the
array powers up, it has all rows deselected, so the array doesn't work at all. This routine turns all the
rows on.

First it writes to the direct register five times with only the PhiSyncSlow line on, then five times
with PhiSyncSlow and all four PhiDeselectn lines on, and finally five times with only
PhiSyncSlow again. This routine is called as soon as the clock generator code is run.

5.9 global.reset

Called as: PROC global.reset ()

This routine is used in the spectrometer channel only. The regular reset is a line by line reset. This
routine resets the whole array at once. To do so it just writes (35 times) a clock word with only the
VrstGlobal line turned on.

5.10 wait.micros

Called as: PROC wait.micros (VAL INT micros.delay)

This simple array is used to pause a requested number of microseconds, using the on-chip clock. It
calculates the number of clock ticks needed for the requested delay, takes a time stamp, and waits
for the timer to hit the needed delay after the timestamp. There is a 10-20 microsecond calling
overhead so this routine isn't useful for small delays.

Printed November 28, 2012 18 NSPN1800

5.11 wait.ms

Called as: PROC wait.ms (VAL INT ms.delay)

This simple array is used to pause a requested number of milliseconds, using the on-chip clock. It
calculates the number of clock ticks needed for the requested delay, takes a time stamp, and waits
for the timer to hit the needed delay after the timestamp.

5.12 initauxport

Called as: PROC initauxport (INT aux.data) (SCAM)
 PROC initauxport (INT aux.data0, INT aux.data1) (Spectrometer)

This routine initializes the data sent out over the digital I/O ports to perform auxiliary functions.
These functions are control of gain and bandwidth, and setting of quadrant analog offset and
(spectrometer channel only) detector bias. Because we use the same hardware port to send a static
bit pattern for gain/bandwidth control (2 bits each) and a time sequence to the serial DAC that
generates the quadrant offsets, we keep a record of the current state of the bit pattern in integer
aux.data (SCAM) or aux.data0 (spectrometer). Integer aux.data1 is used to keep track of
the data for the other port, which is used to write to the serial DAC for the spectrometer channel
detector bias. Each routine that affects the value of these integers changes only the bits it's concerned
with and not the others (see following sections).

There is also a hardware feature to deal with. The signals from the transputer hardware go into the
analog hardware through Burr-Brown ISO150 capacitive isolator chips to cut down on noise
injection from the digital hardware into the analog signals. These chips power up with their output
state indeterminate (actually it's not so much indeterminate as circuit-dependent) rather than copying
the input. Once they have seen a transition from high to low and back again they operate properly.
The first section of this routine writes all bits of each output port low then high then low again to
take care of this requirement.

The routine then gets the default values for the output words and copies them to the output ports so
the hardware has the default gain and bandwidth settings.

5.13 d2a.write

Called as: PROC d2a.write(VAL INT chan, VAL INT offset, INT aux.data0)

This routine writes the serial data for the quadrant offset to the Maxim MAX536 DAC on the bias
board. The serial DAC has four channels, one per quadrant, so chan is 0, 1, 2, or 3 for quadrants
1 to 4. The input data offset is in the range 0 to 4095. The exact voltage this gives is circuit
dependent. The host software controls the offset by sending this data value. Integer aux.data

Printed November 28, 2012 19 NSPN1800

(SCAM) or aux.data0 (spectrometer channel) is the holder for the bit pattern sent out over digital
I/O port 0, so the gain/bandwidth bits are unaltered by the operation of this routine.

The data word to be sent out comprises two bits to select the channel, two control bits (always 0, 1)
and the 12-bit data. We use three bits of the output to send this data word to the chip.

The chip select bit is normally held high all the time. First it is turned off in aux.data and aux.data
is written out. It stays low during the whole write period.

Now there is a short pause, then the data word to be sent is composed from the offset value, the
control bits, and the channel number.

The program now goes into a loop where it sends out the lower 16 bits of the word data. For each
bit, data is right-shifted and AND'ed with datamask to see whether that bit is set. Depending
whether it is or not, the sdata bit is turned on or off in aux.data ,and the word is written out.
The word is then written twice more, with the sck bit turned first on then off, with 1 millisecond
of delay between each write. The effect of this is to pulse the sck bit so as to latch the value of the
data bit (sdata) into the DAC.

Once all 16 bits of the data have been latched into the DAC, the cs bit is returned to its default high
state, ending the write operation.

5.14 detbias.write

Called as: PROC detbias.write(VAL INT detbias, INT aux.data1)

This routine is only used on the spectrometer channel to control the detector bias. On the other
channel the detector bias is set in hardware. It is identical to routine d2a.write, except that it only
writes to one channel of the DAC, and the output port is MotorWr1 not MotorWr0.

Printed November 28, 2012 20 NSPN1800

6 The waveforms

The two following subsections describe the composition of the read and reset waveforms for the two
detectors in detail.

6.1 Spectrometer detector (Aladdin 2)

6.1.1 Detector description and clocking details

The Aladdin 2 detector is laid out as four quadrants, each 512 by 512 pixels. Each quadrant has eight
output lines, with every eighth pixel across a row going to the same output. There are separate lines
into the chip to clock the four quadrants independently, but in NIRSPEC the detector is connected
so that all four quadrants are clocked in sync. We compose and send out a clock pattern for one 512²
quadrant, which actually clocks out four quadrants simultaneously. Since we have wired the detector
this way, and each quadrant is clocked from the outside corner to the center of the array, we can
clock out either the whole detector, or a subarray that has mirror symmetry about the lines dividing
the quadrants.

6.1.1.1 Selecting rows and pixels

Clocking through the rows and pixels of the array is performed by feeding pulses to two shift
registers. The slow shift register selects rows, and the fast shift register selects pixels. The currently
selected pixels in the currently selected rows are seen at the analog outputs. At any point in the clock
pattern, we have selected the same row in each quadrant, and the same 8 pixels in each row. This is
illustrated in Figure 3 below. The figure shows the first set of pixels in the first row, the last set in
the last row, and an arbitrary set in an arbitrary row. (The figure actually shows a 128 by 128
“Aladdin” array so we can see the pixels, and the selected pixels are the third set of the 16th row.)
The slow shift register clocks through rows from the top and bottom edges of the array towards the
middle, and the fast shift register selects sets of 8 pixels starting at the right and left edges and
working in towards the middle.

The slow shift register is driven by four clock lines. There is a sync pulse (PhiSyncSlow) which
is used to initialize the shift register, and two clocks (PhiSlow1 and PhiSlow2), which are
asserted in turn to shift to consecutive pairs of rows. The fourth signal is PhiEvenOdd, which
selects between the odd-numbered or even-numbered row of the selected pair. To set up the register
(once per frame), we pulse PhiSyncSlow followed by PhiSlow1. To select the first row pair,
we then set PhiSlow2 high. To get the next pair we make PhiSlow2 low, pause, then assert
PhiSlow1. We then assert these two clocks in turn until we have selected all the row pairs one after
the other. During the time each of PhiSlow1 or PhiSlow2 is high, we clock through the fast
register (described below), first with PhiEvenOdd low to get the odd-numbered row of the pair,
then with PhiEvenOdd high to get the even-numbered row.

Printed November 28, 2012 21 NSPN1800

Figure 3: Selecting rows and pixels

The fast shift register is similar to the slow one, but needs only three signals. There is a sync pulse
(PhiSyncFast) which is used to initialize it, and two clocks (PhiFast1 and PhiFast2), which
are pulsed in turn to shift to the next set of eight pixels. To set up the register for each row, we pulse
PhiSyncFast, followed by PhiFast1. We then assert PhiFast2 to select pixels 1 - 8 of the
current row in each quadrant. We then make PhiFast2 low, pause, and assert PhiFast1 to select
pixels 9 - 16. We then alternate PhiFast1 and PhiFast2 to clock right through the row. Each
selected pixel goes to its own analog output line, so the first output line will read out pixel 1, 9, 17
and so on, line 2 will read out 2, 10, 18... and so on.

There are 4 possible states of the slow shift register. These are PhiSlow1 on - PhiEvenOdd off,
PhiSlow1 on - PhiEvenOdd on, PhiSlow2 on - PhiEvenOdd off, and PhiSlow2 on -
PhiEvenOdd on. We select each of these states in turn, and for each we clock through the fast shift
register (previous paragraph) once. Once we have gone through rows 1 to 4 we repeat the pattern for
5 to 8, then 9 to 12 and so through the quadrant to row 512. This means that the segment of code we
need to compose to put in the FIFO output buffer is this four row sequence. The hardware can clock
the whole array by repeating this four-row sequence 128 times to go through all 512 rows in each
quadrant.

Printed November 28, 2012 22 NSPN1800

6.1.1.2 Other clock signals

In addition to the shift register clock signals, the array takes two other signals, VResetGlobal and
VresetRow. VresetGlobal is used to trigger a global reset of the array, i.e. all the pixels at
once. VresetRow resets all pixels in the currently selected row pair.

6.1.1.3 Data control signals

There are also three signals, generated as part of the clock pattern, that go to other parts of the
electronics to control data-taking. These are convert, select, and fifo.write.

These three signals are used as follows. Once the fast register has been clocked to the next set of
pixels, we wait a little while for the new analog signal to settle, then toggle convert. This tells the
A-D converter to hold the current value of the analog signal and digitize it. Since the A-D converters
are capable of up to 500kHz operation, it will take just under 2 microseconds for the new data values
to be available. Meanwhile the digital data for the previous set of pixels is still waiting in the output
latches of the converters, so we have to latch those numbers into the acquisition boards. Recall that
there are two A-D converters per analog board. The state of the select line determines which one
is seen at the output connector, and the fifo.write line tells DAQ15 boards to trigger their FIFO
buffers to take in the data. We pulse fifo.write twice, once with select low and once with
select high, so we get both the data values from each analog board.

6.1.2 Read frame waveform

When reading the following description, it is essential to have a copy of the code (routine
makewave in file specclock.occ) and a printout of the clocking pattern available. The clock
pattern is shown in Figure 4, but a larger printout from AutoCAD drawing #613143 is easier on the
eyesight. The vertical dotted lines are one time tick apart. Each waveform is divided up into several
segments, denoted by the slightly heavier dotted lines. Along the top of the diagram each of these
heavier lines has a letter, used to reference the segments in the subsections below.

Along the bottom of the diagram are horizontal lines spanning different sections. The upper set show
how many times each segment from b—c to n—o is written to the FIFO buffer. The lower set shows
how many times each segment is written to the output: once each for a—b and o—p, and 128 times
for the sections written to the FIFO buffer.

6.1.2.1 Segment a — b

This section of the waveform is generated by writing to the direct register, so the ticks are not
actually to the same time scale as the rest of the waveform, which goes out through the repeating
FIFO buffer. They are about twice as long but the timing is not critical. The only thing we do during
this segment is to initialize the slow shift register by first pulsing PhiSyncSlow, then PhiSlow1.

Printed November 28, 2012 23 NSPN1800

6.1.2.2 Segment b — c

This segment is written once to the FIFO buffer. Here we turn on PhiSlow2, which selects the first
row pair. Since we are leaving PhiEvenOdd low, we are now looking at the first row (odd-
numbered) of the pair. We then initialize the fast shift register by pulsing PhiSyncFast followed
by PhiFast1. There is a pause of several ticks after we do all this so that the shift register has some
time to settle down.

6.1.2.3 Segment c — d

This segment is written once to the FIFO buffer. It takes us through the first two sets of pixels in the
row (recall that each new “pixel” selected by the fast shift register is actually 32 pixels, 8 in each
quadrant). First we turn on PhiFast2 to select the first pixel set in the row, then wait npause
ticks before pulsing convert. This starts the A-D converters digitizing the first set of values (1 tick
duration is enough since the convert is edge-triggered). That is all we do during the first pixel time.
PhiFast2 is on for (npause + 7) ticks, then we turn it off.

One tick later we turn on PhiFast1, selecting the second pixel set. Again we wait npause ticks
before pulsing convert. This time we also have data to read into the acquisition transputers - the
data from the first set of pixels. This data from the A-D converters becomes valid 1.3:s after the first
pixel set's convert pulse, and stays valid until 1.1:s after this pixel set's convert pulse.

To read the data into the acquisition transputers we pulse fifo.write twice. The rising edge of
each pulse triggers the DAQ15 input FIFO buffers to read in data. After the first pulse we turn on
the select line, by calling routine select.top. This tells the analog board hardware to switch the
data from the upper A-D converter on each board to the output connector. After we have pulsed
fifo.write the second time we call select.bot to return the select line to zero. This sequence
of two fifo.write pulses and one select pulse occurs in every pixel set except the first. Of
each row. Finally we turn PhiFast1 off.

6.1.2.4 Segment d — e

This segment is written thirty-one times to the FIFO buffer. Following the first two sets of pixels in
each row (previous subsection), where we trigger convert twice but only read data back during
the second set, we go through the rest of the row with this sequence, triggering the convert and
reading data during every pixel period.

First we turn on PhiFast2 to select an odd-numbered pixel set, then wait npause ticks before
pulsing convert. This starts the A-D converters digitizing the analog signals. Then we read data
into the acquisition transputers - the data from the previous set of pixels. Again as described in the
previous section, we pulse fifo.write twice, once with select low and once with select
high. PhiFast2 is on for (npause + 7) ticks, then we turn it off.

Printed November 28, 2012 24 NSPN1800

One tick later we turn on PhiFast1, selecting an even-numbered pixel set. Again we wait npause
ticks before pulsing convert, then read the data from the previous set of pixels by pulsing
fifo.write twice, once with select low and once with select high. PhiFast1 is on for
(npause + 7) ticks, then we turn it off.

6.1.2.5 Segment e — f

In this section, written once to the FIFO buffer, we finish off the first row of this row pair. We
clocked out section c — d once and d — e thirty-one times, making 32 × 2 = 64 sets of 8 pixels,
giving us 512 pixels, which is on row in each of the four quadrants. We have selected each set of
pixels along the row and read in the data from all but the last set. First we wait npause ticks just
as we do in each pixel period, then pulse fifo.write twice, once with select low and once
with select high, to read in that last set of data.

Now we must switch to the even-numbered row of the current pair, so we make PhiEvenOdd high
(it will stay high for the duration of the row). We then initialize the fast shift register for the next row
by pulsing PhiSyncFast followed by PhiFast1. There is a pause of several ticks after we do
all this so that the shift register has some time to settle down.

6.1.2.6 Segment f — g

This segment is exactly the same as segment c — d, except that PhiEvenOdd is high, and is written
once to the FIFO buffer. It takes us through the first two sets of pixels in the row (recall that each
new “pixel” selected by the fast shift register is actually 32 pixels, 8 in each quadrant). First we turn
on PhiFast2 to select the first pixel set in the row, then wait npause ticks before pulsing
convert. This starts the A-D converters digitizing the first set of values (1 tick duration is enough
since the convert is edge-triggered). That is all we do during the first pixel time. PhiFast2 is on
for (npause + 7) ticks, then we turn it off.

One tick later we turn on PhiFast1, selecting the second pixel set. Again we wait npause ticks
before pulsing convert. This time we also have data to read into the acquisition transputers - the
data from the first set of pixels. This data from the A-D converters becomes valid 1.3:s after the first
pixel set's convert pulse, and stays valid until 1.1:s after this pixel set's convert pulse.

To read the data into the acquisition transputers we pulse fifo.write twice. The rising edge of
each pulse triggers the DAQ15 input FIFO buffers to read in data. After the first pulse we turn on
the select line, by calling routine select.top. This tells the analog board hardware to switch the
data from the upper A-D converter on each board to the output connector. After we have pulsed
fifo.write the second time we call select.bot to return the select line to zero. This sequence
of two fifo.write pulses and one select pulse occurs in every pixel set except the first. Of
each row. Finally we turn PhiFast1 off.

Printed November 28, 2012 25 NSPN1800

6.1.2.7 Segment g — h

This segment is exactly the same as segment d — e, except that PhiEvenOdd is high, and is written
thirty-one times to the FIFO buffer. Following the first two sets of pixels in each row (previous
subsection), where we trigger convert twice but only read data back during the second set, we go
through the rest of the row with this sequence, triggering the convert and reading data during every
pixel period.

First we turn on PhiFast2 to select an odd-numbered pixel set, then wait npause ticks before
pulsing convert. This starts the A-D converters digitizing the analog signals. Then we read data
into the acquisition transputers - the data from the previous set of pixels. Again as described in the
previous section, we pulse fifo.write twice, once with select low and once with select
high. PhiFast2 is on for (npause + 7) ticks, then we turn it off.

One tick later we turn on PhiFast1, selecting an even-numbered pixel set. Again we wait npause
ticks before pulsing convert, then read the data from the previous set of pixels by pulsing
fifo.write twice, once with select low and once with select high. PhiFast1 is on for
(npause + 7) ticks, then we turn it off.

6.1.2.8 Segment h — i

This segment (shown twice in Figure 4) starts out like segment e — f, by reading the data for the last
pixel set in the row, pulsing fifo.write twice, once with select low and once with select
high.

Next we make PhiEvenOdd low, because we have finished the even-numbered row of the first row
pair, and PhiSlow2 low because we have now done both rows of the first row pair.

Next we make PhiSlow1 high, which selects the next row pair, then pulse PhiSyncFast
followed by PhiFast1 to initialize the fast shift register.

6.1.2.9 Segment i — j

This segment is the same as segment c — d, except that PhiSlow1 is high instead of PhiSlow2.

6.1.2.10 Segment j — k

This segment is the same as segment d — e, except that PhiSlow1 is high instead of PhiSlow2.

6.1.2.11 Segment k — l

Printed November 28, 2012 26 NSPN1800

This segment is the same as segment e — f, except that PhiSlow1 is high instead of PhiSlow2.

6.1.2.12 Segment l — m

This segment is the same as segment f — g, except that PhiSlow1 is high instead of PhiSlow2.

6.1.2.13 Segment m — n

This segment is the same as segment g — h, except that PhiSlow1 is high instead of PhiSlow2.

6.1.2.14 Segment n — o

This segment is the last one written to the FIFO output buffer. We have selected each set of pixels
along the row and read in the data from all but the last set. First we wait npause ticks just as we
do in each pixel period, then pulse fifo.write twice, once with select low and once with
select high, to read in that last set of data.

Next we make PhiEvenOdd low, because we have finished the even-numbered row of the second
row pair, and PhiSlow1 low because we have now done both rows of the second row pair.

6.1.2.15 Segment o — p

This segment (written via the direct register) is just a placeholder. It actually has nothing happening,
since the array doesn't require any end sequence in its clock pattern. We just clock out a couple of
ticks with all bits zero. This segment has occasionally been used in testing to put out a pulse on an
unused line so we can trigger an oscilloscope to look at the tail end of the waveform.

Printed November 28, 2012 27 NSPN1800

Figure 4: Aladdin 2 read waveform

