
Printed November 28, 2012 1 NSPN1700

NIRSPEC
UCLA Astrophysics Program U.C. Berkeley W.M.Keck Observatory

George Brims Revised January 1, 1999

NIRSPEC Software Programming Note 17.00
Root transputer

1 Introduction

The root transputer is the bridge between the host computer and the transputer network. Its main
function is to act as a message exchange, distributing commands from the host to the other
transputers, and collecting replies and data and passing them back to the host. It also performs some
“housekeeping” functions, monitoring the air temperature at various points inside the electronics
cabinets where it is housed, and controlling and monitoring the arc lamps and quartz-halogen bulbs
in the calibration unit. (Packaged with the root transputer in the “housekeeping box” are two RS232
interface TRAMs, which take care of reading cryogenic temperatures and controlling 110V power
via a Pulizzi power strip. Their programs are described in NSPN34)

2 Program structure

Program structure is shown in Figure 1, and is also discussed in NSPN21, which describes the whole
network, the message passing philosophy, and the structure of all the transputer programs. NSPN08
also discusses host to transputer communications.

Recall that an occam program can have multiple parallel streams of execution, or processes (see
NSPN22 for a guide to programming in occam). Processes communicate over channels, which can
be declared over real (processor to processor) or virtual (process to process in the same transputer)
links.

The root transputer has two main buffer processes, each connected to the host computer on one side,
and the rest of the transputer network on the other. There is a one-to-many process receiving
messages from the host and routing them to the other transputers, and a many-to-one process
receiving messages or data blocks from the other transputers and passing them back to the host.

In order for the “from host” process to reply to the host, it needs to send its message via the “to host”
buffer. The “from host” buffer is not allowed to have a sending channel to the host, since the other
parallel buffer already has one, so it passes the message to the other buffer over a virtual channel
called buffer2buffer.

The second buffer process (“to host”) is a many-to-one process monitoring the three channels from
the three physical branches of the network, and the virtual channel buffer2buffer from the other
process. Whenever a message or data packet comes in, the process re-packages it for transmission

Printed November 28, 2012 2 NSPN1700

host

from host

to host

buffer2buffer

do work

FIFO chain

motors & RS232

slit-viewing camera

spectrometer camera

FIFO chain

FIFO chain

motors & RS232

slit-viewing camera

spectrometer camera

to.worker

from.worker

Figure 1: Root program structure

to the host. If the message contains a “data ready” cid from either camera section, the process enters
a loop where it passes the appropriate number of data packets for that image, before going back to
the top of the main loop and checking for the next message. This ensures that we don't accidentally
interleave data packets from the two camera sections if they should both happen to finish at the same
time.

In addition to its message routing functions, the root transputer also does a little work of its own,
talking to some temperature sensors (Dallas Semiconductor DS1820) distributed around the
electronics cabinets, and controlling and monitoring the various calibration unit lamps. This work
is performed by a separate “do-work” process. Messages from the “from host” buffer go to this
process over virtual link to.worker, and replies go to the “to host” buffer over virtual link
from.worker.

There are also a whole set of one-to-one buffer processes forming a FIFO buffer for messages sent
by the “from host” buffer to the motors/RS232, spectrometer and slit-viewing sections. These use
a set of virtual links (actually declared as three 8-element arrays of links) called
to.motor.fifos, to.spec.fifos, and to.scam.fifos. The last process in each chain
then talks over the physical link to the other processor. These FIFO chains of processes simply give
us somewhere for messages to stack up if one of the other transputers becomes busy or hangs up, and

Printed November 28, 2012 3 NSPN1700

it stops accepting messages. As more and more messages are sent to a busy processor from the host,
they will eventually back up until the from.host buffer is also stalled, unable to pass on the last
message. At that point the problem propagates to the host program, since its attempts to send (even
things intended for other branches of the network) are now blocked.

3 Process details

3.1 From host buffer

The from host buffer is an infinite loop which continually monitors the host link for messages.
Messages arrive in the “counted array” format — an integer followed by a block of bytes of size
given by the integer. The format of the block is a byte command identifier (cid), followed by a two-
byte integer denoting the length of the rest of the message, which is an ASCII string representation
of an integer. The ASCII-encoded integer is the parameter (param) of the cid. The process
extracts the cid and unscrambles the param,. It then uses a (very long) CASE statement to examine
the cid. Every cid is unique to its destination, so it can then be sent onwards (with its parameter)
over the appropriate link. Messages for any other transputer go to the first process in the FIFO chain
for that branch of the network. A cid for the root transputer itself will go over the to.worker link
to the worker process.

3.2 To host buffer

This process is a little more complicated, since it has to read from multiple inputs. It is an infinite
loop which is headed by an ALT construct. The ALT construct lets a transputer process look at
multiple possible sources of input (channels or timers), servicing whichever one has input first. In
this case the four possible sources of input are the channels from the three branches of the physical
network, plus the channel from.worker from its own worker process. Each input is taken in, then
dealt with according to which kind of message it is and what cid it carries.

Whenever a message is received from another process, it can be of two forms. Either it is a simple
message (cid plus param), or a data block. If it is a simple message and the cid isn’t a “data
ready” message from either camera section, it is passed to the routine data.to.host, which
packs it into a packet for transmission to the host. The format in this direction is the same as input
from the host, so the parameter is converted to a string of ASCII bytes.

If the message carries a “data ready” cid, the process enters a code section where it deals with the
data blocks which will immediately come in over the same channel. The frame from the 2562 slit-
viewing camera will arrive as 2 blocks of 32768 pixel values (each 32 bits). The root transputer code
reformats these two blocks into a single frame of 65536 pixels, then passes on the frame ready
message. It then passes the 65536 pixel frame to the routine data.to.host, which breaks it up
into smaller blocks and transmits them to the host. This is necessary because the limit for the
physical link through the MatchBox to the host is 4096 bytes at a time.

Printed November 28, 2012 4 NSPN1700

In the case of the spectrometer camera, there will be 16 blocks, each of 65536 pixels. For each block,
the process sends on the data ready message, with the param set to 1 through 16, followed by the
block itself, split into smaller blocks by routine data.to.host. In this case the host code does
the re-assembly of the data from the different acquisition transputers into a single rectangular frame.
There isn’t enough memory in the root transputer, or any transputer in the system, to hold a whole
10242 frame.

3.3 Worker process

The worker process only handles a few functions. It reads the temperatures in the electronics cabinets
via Dallas Semiconductor DS1820 sensor chips, and controls and monitors the calibration unit
lamps. The structure is an endless loop headed by an ALT statement. The two input to the ALT are
a timer which trigger reading of the next DS1820 sensor, and the input channel to.worker which
takes in the cid and param of the small number of commands which are routed to it.

3.3.1 Temperature sensor reading

The reading of the DS1820 sensors is performed at set intervals, and can be turned on or off from
the host by sending cid value cid.sensor.read. If the parameter is zero, temperature reading
is turned off by setting the flag read.sensors to FALSE. If it has a positive value the flag is set
TRUE, and the interval in seconds between readings is set to the value of the parameter. Each
temperature is returned as the sensor number times 1000, plus the returned sensor reading, which is
in half degrees Celsius. So for example sensor 9, 25.5 degrees would come back as 9051.

There are two other cid values related to the sensors. The first is cid.sensors.reset, which
resets all the sensors on the line. This is mostly used as a diagnostic. If this command is echoed to
the host with parameter 1, at least one sensor is responding to the reset. If it’s 0, there is probably
a connection problem.

The other sensor command is cid.sensors.getid, which gets the unique ROM id of a new
sensor chip. Each DS1820 has a 64-bit identifier programed into its ROM at the factory, and will
only give back data if addressed with that id. This is not a frequent operation but the code is there
if needed. Since the id is 64 bits, it can’t be returned through our message convention in one go.
Sending the request with param of 0 will return the lower 32 bits, and a param of 1 will return the
high 32 bits. To use this command, the new sensor needs to be the only one connected to the root
transputer.

3.3.2 Lamp control and monitoring

Control of the lamps is extremely simple. The DAQ17 transputer board used for the root transputer
has 4 general-purpose I/O ports mapped to registers. The two different sets of lamps — neon, argon,
xenon and krypton arc lamps and three quartz-halogen bulbs — are controlled via separate ports, by
setting on or off the appropriate output bits. The sensor circuitry, which tells us that a lamp has

Printed November 28, 2012 5 NSPN1700

actually turned on or off when commanded, is read back via another register. There are two separate
cid values, cid.lamps.command and cid.lamps.status. The bit pattern for controlling
the lamps is sent to the former, and the response will be the status cid followed by the bit pattern
read from the sensors. If you simply want to know what is on or off without commanding any
changes, send cid.lamps.status with any parameter value and the sensor readings will come
back.

3.4 FIFO buffer processes

Each FIFO buffer chain works in exactly the same way, so I will use the spectrometer camera chain
as the example. We declare an array of 8 virtual channels with the declaration

 [8]CHAN OF TRANS2TRANS to.spec.fifos :

When there is a message from the host to go to the spectrometer camera transputers, the from host
process will write

 to.spec.fifos[0] ! msg; cid; param

The first buffer process will get this message on channel to.spec.fifos[0] and pass it along
on channel to.spec.fifos[1]. The whole code for this buffer process is

 BYTE cid :
 INT param :
 SEQ
 WHILE TRUE
 SEQ
 to.spec.fifos[0] ? CASE
 msg; cid; param
 to.spec.fifos[1] ! msg; cid; param

All this process ever does is read whatever message arrives on the input channel and write it straight
to the output channel. The next process in the chain similarly receives messages on channel
to.spec.fifos[1] and sends them on over channel to.spec.fifos[2].

The last FIFO process takes in messages on channel to.spec.fifos[7] and sends out on
channel to.spec, which is a channel over the physical link to the spectrometer camera clock
generator transputer.

