
Printed March 12, 1999 1 NSPN13.03

NIRSPEC
UCLA Astrophysics Program U.C. Berkeley W.M. Keck Observatory

Jason Weiss March 12, 1999

NIRSPEC Software Programming Note 13.03
Quicklook

1. Introduction

Quicklook (henceforth referred to as QL) is the real-time data view program used with
NIRSPEC. It gives the user the ability to examine a FITS file, whether it be retrieved from
memory from a prior source, or from an exposure taken by NIRSPEC and reduced by the
data reduction pipeline. In addition to the mere display of an image, it allows the user to
perform further data extraction by means of built-in functions such as gaussian fitting and a
photometry package. This document outlines the organization of QL and comments on the
further enhancement of the package.

2. Organization

QL is comprised of many modular programs, each written in IDL, all of which contain one or
more related procedures to be called during the execution of the main program. The program
that begins QL is ns_quicklook.pro in the QL directory (currently
/kroot/kss/nirspec/ui/qlook). It decides how QL is to be run and sets up
variables to be called throughout its execution. It then launches the main user interface
module in ns_display.pro. Here, the widgets are set up, and procedures are assigned to
the various controls.

3. Important Modules

This section describes some of the more important modules in the QL package, and what
they do and when they are called.

A. ns_quicklook

1. Called by: startup scripts
2. Procedures called: ns_display, ns_frame_ready_loop
3. Description / Notes

This routine it the tool used to launch and maintain the running of the QL package.
By default, QL runs with two displays, one for the spectrometer, and the other for the
scam. Additionally, it can be run with the following parameters:

Printed March 12, 1999 2 NSPN13.03

 NOSCAM: To prevent the scam window from being launched.
 NOSPEC: To prevent the spectrometer window from being launched.
 GENERIC= ‘name’: To create a window with the title ‘name’.
 DRP: To run QL in DRP mode.
 KIDL: Implies NIRSPEC server program is running.
 SIM: To run QL with a simulated server.
 GDIR= ‘directory’: Set generic default directory to ‘directory’.
 DBASE=variable: Return the display base widget id to variable.
 STATUS=variable: Return the status window text widget id to variable.

This routine also sets up the first of two important user value (uval) structures to be
referred to throughout the execution of the program. The uval created here is
associated with the base called infobase, a base that is never mapped and is
created solely for the purpose of maintaining this uval. This uval is often referred to
as the info_uval whereas the second uval, established in ns_display is
referred to as base_uval or simply uval. The info_uval maintains the widget
id’s of display bases and the status of the parameters mentioned above. It also
contains information about the camera obtained from the server.

B. ns_display

1. Called by: ns_quicklook
2. Procedures called: ns_show_current, ns_register_template,

ns_graphwindow
3. Description / Notes

This routine is the main executing body of the program, and no doubt, the most
important one. Most importantly, it creates the widgets used in the main user
interface. It creates the buttons and the main menu toolbar used to perform the
various tasks QL was designed for. The menu bar is defined in plot_menu_desc
and its event and draw events are stored in ns_display_event. Button events
and resize events are strored in ns_display_base_event. In addition to
creating these user interface widgets, an invisible base is created to provide
functionality for the arrow keys to move the cursor. This is done by establishing
keyboard shortcut resources stored in the .Xdefaults file.

As mentioned above, this routine also sets up the base_uval. This structure
contains all the information the various subroutines would need to perform their
functions. Since this program does not use common blocks, all global variables are
stored here, associated with the display base id. Therefore, to access this information,
a widget control call to get the user value must be made in each routine. It is
suggested that this be done at the beginning of each routine. Furthermore, if a new
routine is created, it is important to pass the display base id in as a parameter so that
the new procedure has access to the uval. The use of the uval instead of common
blocks is very useful in that each display can contain its own user values directly

Printed March 12, 1999 3 NSPN13.03

related to its own image. In this way, for example, the spectrometer display won’t
access a variable set for the scam display.

Once the widgets and uval are created, the routine calls ns_show_current to load
an image. If there is no current image loaded, it loads a blank screen. Then it
registers the base id’s of the displays it created with the info_uval by calling
ns_register_template. Finally, it calls ns_graphwindow to create a
widget box that will display the various plots the user may wish to view. It remains
unmapped until the user calls upon it.

C. ns_frame_ready_loop

1. Called by: ns_quicklook
2. Procedures called: (in ns_frame_ready_loop_event) ktlClose, show,

ns_open_fits
3. Description / Notes

If the KIDL keyword is set, QL starts a loop contained here in this procedure.
Essentially, this loop is run in the ns_frame_ready_loop_event as a recurring
base event that constantly asks the server for information about the status of the
camera. If the camera is done taking an exposure, this procedure asks the server for
the type of exposure (test or real), filename, guiding status, and other information
about the exposure, and opens the data as a FITS file in the respective display.

D. ns_open_fits

1. Called by: ns_frame_ready_loop_event, ns_menu_event,
ns_arrow_key_event

2. Procedures called: nir_pickfile, ns_readcheck,
ns_get_pathname, ns_get_extension, ns_readfits, sxpar,
ns_show_current

3. Description / Notes

Adapted from the readfits function, this routine loads a FITS file from disk to a
two-dimensional array to be displayed an manipulated by QL. If the pick keyword
is set (e.g. by the menu option, Open…), a dialog box is opened for the user to browse
to the file to be opened.

E. ns_show_current

1. Called by: ns_crude_zoom, ns_display, ns_default_math,
ns_menu_event, ns_display_base_event, ns_draw_event,
ns_open_fits, ns_recenter, ns_set_display_event.pro,
ns_reset_zoom

2. Procedures called: ns_readcheck, ns_readfits
3. Description / Notes

Printed March 12, 1999 4 NSPN13.03

This procedure displays the current image in the display window. If the bias and flat
are toggled, then they are subtracted and/or divided from the current image.

F. ns_register_template

1. Called by: ns_display
2. Procedures called: none
3. Description / Notes

This procedure is called by ns_display when it creates a display for the user to
use. It receives the base id of the newly created display and stores it in the
info_uval.

G. ns_display_base_event

1. Called by: resizing display base or hitting a button
2. Procedures called: ns_center_setup, ns_recenter,

ns_crude_zoom, ns_reset_zoom, ns_show_current
3. Description / Notes

This procedure handles button and resize events. If a button is added to the display
widget, its handler must be added here. Button values are passed in by name.

H. ns_display_event

1. Called by: selecting a display menu item or moving cursor into draw window
2. Procedures called: ns_menu_event, ns_fits_event
3. Description / Notes

This procedure determines which kind of event occurred between a menu event and a
FITS window event, such as mouse movement over the draw window. Menu events
are sent to ns_menu_event, and window events are handled by
ns_fits_event.

I. ns_fits_event

1. Called by: ns_display_event
2. Procedures called: ns_draw_event
3. Description / Notes

This procedure first determines if the event is a tracking event, that is, mouse
movement in or out of the window. If it is, it marks the case in the uval. If it isn’t,
that is a clicking event or a motion event, it is sent to ns_draw_event.

J. ns_draw_event

Printed March 12, 1999 5 NSPN13.03

1. Called by: ns_fits_event
2. Procedures called: ns_profile_plot, ns_show_current,

ns_statistics, ns_horizontal, ns_vertical,
ns_box_contour, ns_box_surface, ns_photometry,
ns_gaussian

3. Description / Notes

This procedure handles most of the events that occur in the image display window. It
covers actions such as motions in the window, clicking in the window, and drawing
boxes. It use event tag names such as event.press and event.release to
determine what action was taken, and the uval flags drawing_box and others to
determine what action to take. To determine which process needs the information
extracted in this event, it calls the mode flag from the uval. For example, if the user
wants to draw a box for a horizontal profile, to start the box, event.press is set to
one, the horizontal profile sets drawing_box to one, and box_mode to ‘Box
Horizontal’. The routine is divided into sections for each type of action, and
they are identified by the comments.

K. ns_arrow_key_event

1. Called by: hitting an arrow key, hitting a hotkey
2. Procedures called: same as ns_menu_event
3. Description / Notes

This procedure defines what action to take when a key accelerator defined in
.Xdefaults is pressed. Currently, the supported keys are the arrow keys, which
move the cursor one pixel in the corresponding direction, control + the arrow keys,
which move the cursor four pixels in the corresponding direction, and the hotkeys
defined for the menu actions.

L. ns_point_setup

1. Called by: ns_arrow_key_event, ns_menu_event
2. Procedures called: ns_instruct_setup, ns_photometry,

ns_gaussian
3. Description / Notes

This procedure tells the program that a box is not being drawn and that a point is
going to be picked. It then changes the cursor and begins the respective procedure
that the picked point is for. Currently, this is only called for photometry and gaussian
fitting. Profile at cursor plotting is started by ns_profile_setup which
essentially does the same thing, but uses ns_draw_event to launch
ns_rowcol_profile.

M. ns_graphwindow

Printed March 12, 1999 6 NSPN13.03

1. Called by: ns_display
2. Procedures called: ns_box_contour, ns_box_surface,

ns_rowcol_profile
3. Description / Notes

This procedure creates the window in which the profile at point, contour and surface
plots are plotted. When not in use, it is unmapped. If the user hits the ‘Done’ button,
the base becomes unmapped. If the user kills the window, the window redraws itself
unmapped. In this way, the base always exists.

N. ns_menu_event

1. Called by: ns_display_event
2. Procedures called: ns_show_current, ns_display_quit,

ns_quit_all, ns_open_fits, ns_save_fits, ns_ps_current,
ns_toggle_keep_zoom_center, ns_center_setup, ns_recenter,
ns_change_color, ns_reset_display, ns_set_display,
ns_set_autoscale, ns_point_setup, ns_default_math,
ns_arithmatic, ns_sdiff, ns_statistics, ns_horizontal,
ns_vertical, ns_profile_setup, ns_contour_toggle,
ns_box_contour, ns_draw_box, ns_surface_toggle,
ns_xsurface_toggle, ns_box_surface, ns_crude_zoom,
ns_header

3. Description / Notes

This procedure maps the user choice on the main menu bar to the corresponding
procedure that performs the actions suggested by the name of the option. Since the
menu is a cw_pdmenu, each option on the menu is treated as a button. The value of
the menu is passed as the name of the option, so that if the order of
plot_menu_desc is changed, this routine does not have to be changed. However,
if a button title is changes, this routine must reflect that.

O. Brief Description of Remaining procedures (procedures called by)

1. ns_aper (ns_photometry): computes concentric aperture photometry
2. ns_arithmatic (ns_menu_event, ns_arrow_key_event): provides

interface for performing mathematical operations on images
3. ns_box_contour (ns_draw_event, ns_menu_event,

ns_graphwindow): displays contour plot of image area in the graph window
4. ns_box_surface (ns_draw_event, ns_menu_event,

ns_graphwindow): displays surface plot of image area in the graph window
5. ns_calc_display (ns_show_current): determines scale and min and

max value of pixels to find the best way to display the image

Printed March 12, 1999 7 NSPN13.03

6. ns_center_setup (ns_display_base_event, ns_menu_event,
ns_arrow_key_event): sets up new center picking

7. ns_change_color (ns_menu_event): allows user to change color table
8. ns_contour_toggle (ns_menu_event): sets filling of contour plots
9. ns_crude_zoom (ns_menu_event, ns_arrow_key_event,

ns_display_base_event) : handles zooming in and out of the image
10. ns_default_math (ns_menu_event, ns_arrow_key_event): allows

users to set BIAS/FLAT files and application.
11. ns_gaussian (ns_point_setup, ns_draw_event): displays

information regarding the gaussian fitting of a point of the image
12. ns_gaussian_fit (ns_gaussian): performs actual gaussian fitting and

sends results to ns_gaussian
13. ns_get_extension (ns_open_fits, ns_arithmatic): returns the

extension of a filename
14. ns_get_pathname (ns_open_fits, ns_arithmatic): returns the

pathname of a filename
15. ns_horizontal (ns_draw_event, ns_menu_event,

ns_arrow_key_event): plots the average value of a horizontal cut of the
image

16. ns_instruct_setup (ns_center_setup, ns_draw_box,
ns_point_setup, ns_profile_setup): sets the value of the status bar on
the display

17. ns_moment (ns_calc_display, ns_statistics): computes the mean
and standard deviation.

18. ns_movetel (ns_menu_event, ns_arrow_key_event): send a
command to the server to move the telescope an amount determined by user clicks.

19. ns_header (ns_menu_event, ns_arrow_key_event): displays fits
header information about the current file.

20. ns_pan (ns_arrow_key_event): centers the image around a point where
the user clicks.

21. ns_photometry (ns_draw_event, ns_point_setup): displays
photometric information about a point where the user clicks

22. ns_profile_plot (ns_draw_event): sets up plotting of profile at point
where user clicked

23. ns_profile_setup (ns_menu_event): sets up draw window so that point
where user clicked is used to plot a profile at that point

24. ns_ps_current (ns_menu_event, ns_arrow_key_event): creates a
postscript file of the current image.

25. ns_print (ns_ps_current): creates widget that prompts for printer name.
26. ns_print_plot.pro (ns_horizontal, ns_vertical,

ns_rowcol_profile, ns_box_surface, ns_box_contour): creates
widget that allows user to specify whether to print plot to a file or to a printer, and to
specify a filename or printer name.

Printed March 12, 1999 8 NSPN13.03

27. ns_quit_all (ns_menu_event, ns_arrow_key_event): calls
ns_quit_quicklook

28. ns_quit_quicklook (ns_quit_all): exits program completely
29. ns_readcheck (ns_arithmatic, ns_default_math,

ns_open_fits, ns_sdiff, ns_show_current, ns_statistics):
checks to see if a file exists

30. ns_readfits (ns_arithmatic, ns_open_fits, ns_sdiff,
ns_show_current, ns_statistics): reads the data and header from an
opened FITS file and stores them in arrays

31. ns_recenter (ns_menu_event, ns_arrow_key_event,
ns_display_base_event): recalculates the center of an image

32. ns_reset_display (ns_menu_event):calls ns_show_current
33. ns_reset_zoom (ns_display_base_event,

ns_arrow_key_event): resets the zoom to 1:1
34. ns_rowcol_profile (ns_profile_plot, ns_graphwindow): creates

a historgram in the graph window in the x and y directions from a point that the user
clicks on

35. ns_save_fits (ns_menu_event, ns_arrow_key_event,
ns_default_math, ns_display_base_event): saves image to a FITS
file

36. ns_sdiff (ns_menu_event, ns_arrow_key_event):subtracts the
previous image from the current image

37. ns_set_autoscale (ns_menu_event): set the autoscaling of the image
38. ns_set_display (ns_menu_event):allows user to manually set the

minimum and maximum pixel value for display scaling
39. ns_show_original (ns_arithmatic, ns_sdiff): calls

ns_show_current
40. ns_statistics (ns_draw_event, ns_menu_event,

ns_arrow_key_event): calculates statistical information about a range of
pixels within a user drawn box

41. ns_string_or_num (ns_arithmatic): determines if input is a string or a
number

42. ns_surface_toggle (ns_menu_event): toggles whether the surface plot
is shaded

43. ns_toggle_keep_zoom_center (ns_menu_event): toggles whether
zoom and center get reset when a new image is opened.

44. ns_vertical (ns_draw_event, ns_menu_event,
ns_arrow_key_event): plots the average value of a vertical cut of the image

45. ns_writecheck (ns_ps_current, ns_save_fits): checks to see if a
file exists and can be written to

46. ns_writefits (ns_save_fits): writes image data to a FITS file
47. ns_xsurface_toggle (ns_menu_event): toggles whether to use

xsurface widget for displaying a surface plot.

Printed March 12, 1999 9 NSPN13.03

P. IDLLIB files

Some routines are stored and accessed from the idllib directory
(/kroot/kss/nirspec/ui/idllib). This directory can hold commonly accessed
routines such as cursors and routines that communicate with the server. The following is
a brief description of the files called by QL.

1. kidl.pro (ex. ktlClose, show): routines that make connection with

server.
2. nir_pickfile.pro: user dialog box for picking files to be opened or written to.
3. nir_tvbox.pro: box shaped cursor drawn on the image where a user clicks,

used in gaussian fitting.
4. nir_tvcircle.pro: circle shaped cursor drawn on the image where a user

clicks, used in photometry.
5. ns_xdisplayfile: modified version of xdisplayfile that also contains a

button for opening a webpage in Netscape.

4. Adding routines

A. Tips and Comments

In this section, we will give tips on adding routines to the QL package, and important aspects of
the program to take note of. One important aspect of QL, as mentioned above, is the accessing
of global variables. If a new routine requires information that is accessed outside of the scope of
the routine itself, it must take the display base id as a parameter so that it has access to the base
uval. Also, if the information created for the new routine needs to be accessed elsewhere, the
uval in ns_display must include these new variables. Furthermore, if your routine updates a
variable in the uval, the routine must incorporate this change by using a widget_control
call. Another aspect of concern is incorporation into the user interface so that the user has access
to the new routine. Most new routines will want to be accessed by the main menu bar.
Therefore, the title of the new routine will need to be added to plot_menu_desc in
ns_display, and what to do when the option is chosen from the menu needs to be added to
ns_menu_event. If you want to assign a hotkey to your routine, a few step must be taken: 1)
create a button widget in the invisible base in i_menu of the invisible base in ns_display,
giving it a resource name; 2) register the button with xmanager; 3) assign the hotkey in the
~/.Xdefaults file; 4) add the handling routine in ns_arrow_key_event. If the new
routine requires action for any cursor motion over the image or clicking on a pixel in the image,
the event handler must be included in ns_draw_event. Also, if the user clicks on a point in
the new routine, a setup file may be needed such as ns_profile_setup, or
ns_point_setup can be modified. If the image needs to be redrawn, a call should be made
to ns_show_current to do this. Any new windows drawn should be resizable, and
remember to include kill_notify events where necessary. Also, any communications with
the server can access the functions defined in kidl.pro in the idllib directory, such as
show, which asks the server for the value stored in a keyword and copies it into a local variable.
These procedures are touched upon in the following example.

Printed March 12, 1999 10 NSPN13.03

B. Example

Suppose you want to add the module call ns_my_math_routine, which performs
some math operation on a pixel the user clicks on. The header of the routine must take
the display base id as a parameter, e.g.

 pro ns_my_math_routine, display_base_id

Then, the first line should call to the global uval.

 widget_control, display_base_id, get_uvalue=uval

Next, include your code and such, performing any operations desired. If any values in
the uval are changed by your routine, remember to update this at the end:

 widget_control, display_base_id, set_uvalue=uval

If you want to add a new variable to the uval, add it in both the junk2 structure, which
defines the uval structure, and the base_uval structure, which gives the variables their
initial values, both in ns_display.

Now, you want to give the user access to your routine, so you want to put it in the Math
heading of the menu bar. So add a line to plot_menu_desc, somewhere under Math,
but before Plot:

 { CW_PDMENU_S, 0, ‘My Math Routine’ }, $

Then, you need to add a line to the menu event handler in ns_menu_event in the case
loop:

 ‘My Math Routine’: ns_point_setup, Event.top, value

We call ns_point_setup since the user will click on a point. This will get QL ready
to act on a click. Add the following lines:

if (mode eq ‘My Math Routine’) then $
ns_my_math_routine, ns_display_base_id

ns_point_setup redefines uval.point_mode as ‘My Math Routine’. Now
we want your routine called whenever the user clicks on a pixel, so we add the following
to the case loop in the last if block in ns_draw_event:

 ‘My Math Routine’: BEGIN
 ; your_code… (anything needed for your

routine to work)

Printed March 12, 1999 11 NSPN13.03

 ns_my_math_routine, event.top
 END

Now suppose you want to assign the key ‘Control+m’ to the routine. First, add a button
to ns_display where the other keys are assigned:

 mymathname = resource_root + ‘mymath’

i_mymath = widget_button(i_menu, value = ‘mymath’, $
resource_name = mymathname

Then, register it with xmanager:

 xmanager, ‘ns_arrow_key_event’, i_mymath, /just_reg, $

/no_block

Then assign the hotkey in ~/.Xdefaults:

 Idl*scambase*scam_mymath*accelerator: Ctrl<Key>m

Note: scam is used regardless of display type. Then add the handler in
ns_arrow_key_event just as done in ns_menu_event.

These actions are not comprehensive, but they outline the basic steps to be taken upon
adding a module.

