

Printed November 28, 2012 1 NSPN0601

══

 NIRSPEC
UCLA Astrophysics Program U.C. Berkeley W.M.Keck Observatory
══
James Larkin based on 6.00 by Tim Liu March 3, 1999

 NIRSPEC Software Programming Note 06.01

Keyword Library

1 Introduction

 This document describes the implementation of the NIRSPEC keyword library. The
reader should refer to NSDN0600 for design outlines and a preliminary list of NIRSPEC
keywords.

2 Overview

 The NIRSPEC keyword library is an interface layer between the KTL applications such
as the GUI and CLI and the underlying instrument server. The connectivity is provided by the
RPC message system. The keyword library provides the following functions:

 connect to RPC server
 control over keyword library
 read a keyword from server (one-shot)
 write a keyword to server
 broadcast a keyword from server (continuous read)
 disconnect from server

 The keyword library routines are in the source module nirspec_keyword.c. The
RPC interface routines called in nirspec_keyword.c are contained in nrpc_face.c. In
addition, the following special header files are used by the keyword library source file:

 ktl.h - generic KTL definitions
 ktl_keyword.h - keyword style specific KTL definitions
 nirspec.h - NIRSPEC specific definitions
 nrpc.h - RPC protocol definitions
 error.h - error code and message definitions

Except for ktl.h and ktl_keyword.h which are provided by the /kroot/ktl structure,
all the other source modules are located in the server directory
/kroot/kss/nirspec/keyword.

Printed November 28, 2012 2 NSPN0601

 The NIRSPEC keyword library has been developed on the basis of keyword libraries for
existing Keck systems.

3 Program Description

3.1 Header file “nirspec.h”

 The header file "nirspec.h" contains NIRSPEC keyword definitions. The keywords
are declared in the data structure array KeywordTable[] as shown below:

typedef struct {
 char *keyword; /* NIRSPEC keyword name */
 KTL_DATATYPE datatype; /* keyword data type */
 char *initval; /* initial value */
 double minval; /* mininum value */
 double maxval; /* maximum value */
 int cli; /* valid CLI Tcl command if TRUE */
 int argnum; /* # CLI command args; 0 = any */
 int cid; /* transputer command id */
 int broadcast; /* broadcast flag (TRUE or FALSE) */
 int rwflag; /* readable/writable flag */
 int access; /* Keyword classification */
 char units[80]; /* Units field */
 char help[80]; /* single line help */
 char alias[80]; /* command alias */
} KEYWORD_TABLE;

static KEYWORD_TABLE KeywordTable[] = {
 "telescop", KTL_STRING, "Keck II", 0, 0,
 TRUE, 0, 0,
 TRUE, RDABLE | WRABLE, 0, “”,
 “Set telescope name”,
 “Set telescope name”,
 "observer", KTL_STRING, "UCLA IR Lab team", 0, 0,
 TRUE, 0, 0,
 TRUE, RDABLE | WRABLE, 0, “”,
 “Set observer’s name”,
 “Set observer’s name”,
 "outdir", KTL_STRING, "/kroot/data/spec/", 0, 0,
 TRUE, 1, 0,
 TRUE, RDABLE | WRABLE, 0, “”,
 “Set SPEC data directory”,
 “Set SPEC data directory”,
......
};
#define NUM_KEYWORDS (sizeof(KeywordTable) / sizeof(KEYWORD_TABLE))

Printed November 28, 2012 3 NSPN0601

 The different fields in the structure are explained by the comments lines in
KEYWORD_TABLE. To add a keyword to the table, create a new entry by filling out the fields in
the structure and recompile the server program. You may also need to recompile the client
programs so that the CLI and EFS programs that require knowledge of keywords can be updated
as well.

 Another important definition in the header file is the RPC service handle HANDLE which
is used in both nirspec_keyword.c and nrpc_face.c. HANDLE is declared by the
following data structure:

tyepdef struct handle {
 char *server_host; /* RPC server host name */
 char *client_host; /* RPC client host name */
 char *client_user; /* RPC client user login */
 CLIENT *client; /* RPC client handle */
 SVCXPRT *transport; /* broadcast service transport */
 int prognum; /* broadcast program number */
 fd_set fdset; /* file descriptor set */
} HANDLE;

3.2 Routines in nirspec_keyword.c

 This section only discusses those important function routines in the keyword library
module.

int keyword_open(char *service, char *style, int flag,
 HANDLE **handle):

This routine opens a connection to the RPC message system. It first calls
rpc_clientOpen() in the RPC interface routine module nrpc_face.c to create a
RPC client handle as shown below:

if ((status = rpc_clientOpen((*handle)->server_host,
 &(*handle)->client)) < 0) {
 free((*handle)->server_host);
 free(*handle);
 return status;
}

keyword_open() will return if the call to rpc_clientOpen() returns a negative
status code which indicates a failure in creating the RPC client handle.

The routine then obtains the host domain name from get_hostname() in
nrpc_face.c and the user login from the environment variable USER as seen below:

 if (get_hostname(client_host) < 0) {
 status = CLNT_ERR_NO_HOSTNAME;

Printed November 28, 2012 4 NSPN0601

 syslog(LOG_ERR, ClntErrMsg[-status - CLNT_ERR_CODE0]);
 return status;
 }
 (*handle)->client_host = strdup(client_host);

 if ((client_user = (char *)getenv("USER")) == NULL)
 client_user = strdup("unknown");
 (*handle)->client_user = strdup(client_user);

keyword_open() also checks the access permission of the RPC client by calling
rpc_clientAcess() in nrpc_face.c which finds the access information from the
RPC server:

 if ((status = rpc_clientAccess(*handle)) < 0)
 return status;

Finally, this opening routine sets up RPC broadcast function by calling the RPC interface
routine rpc_broadcastSetup() in nrpc_face.c:

 if ((status = rpc_broadcastSetup(&(*handle))) < 0)
 return status;

rpc_broadcastSetup() creates a service transport handle, registers the handle with
the portmapper, and creates a client handle on the RPC server side.

int keyword_ioctl(HANDLE *handle, int flags, int arg1, int arg2,
 ...):

This routine controls various aspects of the interactions of the keyword library with the
message system. The integer flags defines an operation to perform and arg1, arg2,
..., are flag-dependent arguments. The only operation used by the NIRSPEC keyword
library is to return the mask of file descriptors. The flag for this operation is KTL_FDSET
and the function returns the RPC fd set.

int keyword_read(HANDLE *handle, int flags, char *object_name,
 KTL_POLYMORPH *call_data):

This routine reads a keyword. This is done by calling the function rpc_read() in
nrpc_face.c as shown below:

 retval = rpc_read(handle->client, object_name, call_data);

where object_name is the keyword to be read and call_data is the structure
containing the data to be received. The interface function rpc_read() calls the server
remote procedure rpc_read_1() in nrpc_svc_proc.c to perform the keyword
read function.

Printed November 28, 2012 5 NSPN0601

int keyword_write(HANDLE *handle, int flags, char *object_name,
 KTL_POLYMORPH *call_data):

This function writes a keyword by calling the function routine rpc_write() in
nrpc_face.c:

 retval = rpc_write(handle->client, object_name, call_data);

where object_name is the keyword and call_data is the structure containing the
data to be written. rpc_write() calls the remote procedure rpc_write_1() on the
RPC server to perform the keyword write function.

int keyword_close(HANDLE *handle):

This keyword function disconnects the keyword library from the RPC message system. It
first calls rpc_broadcastClose() in nrpc_face.c to close RPC broadcast and
then destroys the RPC client handle by using the RPC function clnt_destroy().

What rpc_broadcastClose() does is to first call the server remote procedure
rpc_closebroadcast_1() in nrpc_svc_proc.c to do the job and then destroy
the broadcast server handle. This is illustrated from the following code:

 /*
 * Call remote procedure on the server
 */
 status_res = rpc_closebroadcast_1(&arg, handle->client);
 if (status_res->status < 0)
 syslog(LOG_ERR, status_res->errmsg);

 /*
 * Destroy the broadcast server handle
 */
 if (handle->transport != NULL) {
 (void) pmap_unset(handle->prognum, RPCB_VERS);
 (void) svc_destroy(handle->transport);
 }

int keyword_event(HANDLE *handle, int *nevent,
 KTL_EVENT_DESCR **pdescr):

This routine returns descriptions of events which are keyword broadcasts from the RPC
server and invokes callback functions. The argument nevent indicates the number of
events occurred and pdescr is the event descriptor, a data structure containing various
information on an event. keyword_event() receives a RPC broadcast client request
and calls the RPC broadcast dispatch routine as shown below:

 while (!done) {
 switch (select(maxfd, &handle->fdset, NULL, NULL, &timeout)) {
 case -1:

Printed November 28, 2012 6 NSPN0601

 if (errno == EINTR)
 continue;
 return -1;
 break;
 case 0:
 return 1;
 break;
 default:
 svc_getreqset(&handle->fdset);
 done = TRUE;
 break;
 }
 }

The dispatch routine rpc_broadcast_prog() is in nrpc_face.c. This routine
decodes the function argument passed by the client, fills in the event descriptor and adds
the new entry to the event list.

4 Library Building

 The keyword library routines in nirspec_keyword.c are built as a shareable object
library named libnirspec_keyword.so.0.0 by makefile in the server directory
/kroot/kss/nirspec. Below is part of the make file that builds the keyword library:

APP = nrpc
CC = cc -DNIRSPEC_DEBUG
CFLAGS = -g -I$(KROOT)/rel/default
LIBS = -lnsl -lc -lm -lucb \
 /kroot/rel/default/lib/libktl.so.0.0 \
 /kroot/rel/default/lib/libktlker.so.0.0

TARGET = libnirspec_keyword.so.0.0 nirspec_server clean
all: $(TARGET)

Build keyword sharable library
libnirspec_keyword.so.0.0: nirspec_keyword.o $(APP)_face.o $(APP)_clnt.o
$(APP)_xdr.o
 ld -G -o $@ nirspec_keyword.o $(APP)_face.o $(APP)_clnt.o \
 $(APP)_xdr.o $(LIBS)

 The keyword library built above is for the real instrument server. A separate shareable
library is also required for the simulation server. This object library is called
libnirspecsim_keyword.so.0.0 and built by the simulation server make file
makefile_sim in the same directory. In fact, libnirspecsim_keyword.so.0.0 and
libnirspec_keyword.so.0.0 are identical except for different names.

