

Printed November 28, 2012 1 NSPN0400

══

 NIRSPEC
UCLA Astrophysics Program U.C. Berkeley W.M.Keck Observatory
══
Tim Liu March 12, 1997

 NIRSPEC Software Programming Note 04.00

Echelle Format Simulator External Interface

1 Introduction

 This programming document describes the implementation of the Echelle Format Simulator
(EFS) interface to the NIRSPEC server. As discussed in the design note NSDN1000 (Interface
Between Echelle Format Simulator and NIRSPEC Server), the graphical user interface frond-end
EFS will be implemented as a client program under the NIRSPEC client-server architecture. In
order for this IDL widget based program to communicates with the server software which is coded
in C, an inter-process communication (IPC) mechanism combining a UNIX socket and the IDL
CALL_EXTERNAL function has been developed in NSDN1000. The reader should refer to
NSPN1000 for details of the design.

2 Overview

 The EFS-server interface should be capable of handling a high volume of traffic, some of
which may be mission-critical like aborting an exposure. Therefore, rather than routing messages
through the GUI-server link, a direct communication channel is set up to ensure a fast response time,
though the former technique is simpler. For the same reason, in contrast to other low traffic and less
time-critical IPCs employed in the NIRSPEC software such as the GUI-QL link, the ESF-server
interface implements a dedicated and stand-alone process in order to manage the bi-directional
message flow more efficiently.

 The EFS-server communication routines are contained in three source modules:
efs_gateway.c, efs_server.c, and efs_client.c. In addition, the low-level socket
routines used in these source files are from socket.c which has been described in NSPN0200
(Programming Note on Command Line User Interface). These source files provide a gateway to the
non-IDL server software for EFS. The following is brief descriptions of these modules:

 efs_gateway.c - EFS gateway main program and related routines
 efs_server.c - socket server routines used by the gateway program
 efs_client.c - socket client routines called by IDL CALL_EXTERNAL function
 socket.c - low-level socket routines

Printed November 28, 2012 2 NSPN0400

 All the source files are located in the NIRSPEC client software development directory
/kroot/kui/xnirspec.

3 Program Description

3.1 efs_gateway.c

 When compiled, this module will run as a stand-alone process to handle the communication
between the server and EFS. This gateway program contains the following routines:

void main(int argc, char *argv[]) - main program

void EFS_createInterest(KTL_HANDLE *ktl_handle) - set up keyword broadcast
void EFS_callback(char *keyword,
 void *user_data,
 KTL_POLYMORPH *call_data,

 KTL_CONTEXT *context) - callback for keyword broadcast
void EFS_parse(int fd, char *cmd) - parse command string from EFS
int lookup(char *keyword) - look up KTL keyword table index

 The source file efs_gateway.c includes “ktl.h” and “nirspec.h” because several
KTL routines and the NIRSPEC keyword table are used inside the program. In addition, the macros
EXPRESS_INTEREST() and KTL_DISPATCH() are defined in the module for KTL function
calls. These routines are described below:

1. The main function main() first checks command line arguments. For the moment, only the
simulation switch “-s” can be supplied. Like other main functions in the NIRSPEC software,
main() disables contrl-C to prevent accidental killing of the program. To communicate with
the instrument server, the program makes a connection to the NIRSPEC keyword library by calling
ktl_open(). Callbacks to respond to keyword changes from broadcasting are set up using
EFS_createInterest(). The program then opens a socket channel to EFS with a 20 seconds
time-out which allows the socket client enough time to open when EFS is launched.

 The core of main() is the event loop to process KTL RPC events and EFS socket events.
Because the gateway program must be able to handle the two different file I/O sources, an
asynchronous I/O multiplexing scheme is implemented for the event loop using the UNIX
select() function call. select() examines an I/O file descriptor sets to see if any of the file
descriptors are ready for reading, writing, or have an exceptional condition. A fd set consisting of the
KTL fd and the EFS socket fd is created in the beginning of the loop as follows:

FD_ZERO(&readfds);
ktl_ioctl(khand, KTL_FDSET, &readfds);
FD_SET(efs_fd, &readfds);

Printed November 28, 2012 3 NSPN0400

The macro FD_ZERO() initializes a file descriptor set to the null set. Note that because the KTL
call ktl_ioctl(,KTL_FDSET,,) automatically clears a fd set, it must be placed before the
macro FD_SET(efs_fd, &readfds)which includes efs_fd in the read fd set readfds.

 The next code segment in the event loop is to block the process indefinitely until an EFS or
KTL event arrives:

if ((select(maxfds, &readfds, NULL, NULL, NULL) == -1) && (errno != EINTR)) {
 perror("select() failed.");
}
else {
 /*
 * Get input from EFS
 */
 if (FD_ISSET(efs_fd, &readfds)) {
 if (EFS_serverIO(0, cmd) != -1)
 EFS_parse(efs_fd, cmd);
 }
 /*
 * Invoke KTL event handler
 */
 else
 KTL_DISPATCH(khand);
}

select() returns if either of the two fds is ready for reading. The program calls the macro
FD_ISSET() to determine which fd is ready, and then invokes either EFS_serverIO() and
EFS_parse() or KTL_DISPATCH() to perform the request operation.

 When main() exits, the socket channel to EFS and the RPC connection to the NIRSPEC
server are closed with EFS_serverClose() and ktl_close().

2. When the gateway program receives a keyword which is sent from the NIRSPEC server via
broadcast, a user-defined callback function will be invoked by KTL_DISPATCH() to send this
keyword to EFS through the socket link. Whether the program should respond to a NIRSPEC
keyword broadcast from the server is defined by EFS_createInterest() using the defined
macro EXPRESS_INTEREST:

for (i = 0; i < NUM_KEYWORDS; i++) {
 EXPRESS_INTEREST(KeywordTable[i].keyword, EFS_callback);
}

where EFS_callback() is the callback routine. By definition, any keyword broadcast will
invoke a callback in the gateway program that will forward this keyword to EFS.

Printed November 28, 2012 4 NSPN0400

 The callback function first determines a keyword index using lookup() which looks up
the NIRSPEC keyword table and then constructs a keyword string as follows:

switch (KeywordTable[i].datatype) {
 case KTL_INT:
 case KTL_BOOLEAN:
 sprintf(str, "%s %d", keyword, call_data->i);
 break;
 case KTL_DOUBLE:
 sprintf(str, "%s %f", keyword, call_data->d);
 break;
 case KTL_STRING:
 sprintf(str, "%s %s", keyword, call_data->s);
 break;
}

The constructed string str is sent to EFS by:

EFS_serverIO(str);

3. On the other hand, when the gateway program receives a command string from EFS, it calls
EFS_parse() to convert the string into a keyword/value pair and then send it to the NIRSPEC
server. EFS_parse() first breaks the string into tokens separated by spaces using strtok().
The first token is the keyword:

keyword = strdup(strtok(cmd, " "));

The keyword value data comes from the second token (or the rest of the command string if the
keyword has a string type):

switch (KeywordTable[i].datatype) {
 case KTL_INT:
 case KTL_BOOLEAN:
 strcpy(value, strtok(NULL, " "));
 if (value != NULL)
 data.i = atoi(value);
 break;
 case KTL_DOUBLE:
 strcpy(value, strtok(NULL, " "));
 if (value != NULL)
 data.d = atof(value);
 break;
 case KTL_STRING:
 str = strtok(NULL, "");
 if (str != NULL)
 strcpy(value, str);

Printed November 28, 2012 5 NSPN0400

 else
 *value = NULL;
 data.s = strdup(value);
 break;
}

Finally, the keyword and its value are sent to the server via the RPC link using ktl_write(). A
status message is replied to EFS using the socket I/O call EFS_serverIO().

3.2 efs_server.c

 This source file contains routines to provide server-side socket communications with EFS.
These routines are similar to those in ql_server.c which has been described in NSPN0300
(Programming Note on Quick Look External Interface). The reader should consult with the design
note for descriptions. In the future, efs_server.c and ql_server.c will be merged into a
single source module.

3.3 efs_client.c

 There’re also many similarities between the socket client routines in efs_client.c and
those in ql_client.c. Therefore, no separate description is given here. The reader should refer to
NSPN0300 for discussion. Again, efs_client.c and ql_client.c will be combined into a
single file.

4 Program Compiling

 All the source code in the NIRSPEC client software directory /kroot/kui/xnirspec
is compiled using the make file makefile. The EFS gateway program executable efs_gateway
is built from the three source files efs_gateway.c, efs_server.c, and socket.c as shown
by the following lines in makefile:

CC = cc
CFLAGS = -g -I$(INCLUDE) -I$(KROOT)/rel/default/include

NAMES2 = efs_gateway efs_server socket
SOURCE2 = $(NAMES2:%=%.c)
OBJECT2 = $(NAMES2:%=%.o)
LIBS3 = -L$(KROOT)/rel/default/lib -lktl -lktlker -lkcl -ldl -lsocket \
 -lucb -lm

TARGET = xnirspec cnirspec ql_client.so efs_gateway efs_client.so
all: $(TARGET)

Build EFS gateway program
efs_gateway: $(OBJECT2)

Printed November 28, 2012 6 NSPN0400

 $(CC) -o efs_gateway $(OBJECT2) $(LIBS3)

 The socket client routines in efs_client.c are built as a shareable object library named
efs_client.so that can be invoked by the CALL_EXTERNAL call:

Build EFS socket client sharable object library
efs_client.so: efs_client.o
 ld -G -o $@ efs_client.o socket.o

5 Program Execution

 The NIRSPEC user interface client software starts by executing the shell script file
xnirspec.sh in /kroot/kui/xnirspec. The stand-alone EFS gateway program
efs_gateway is launched by the scrip as follows:

if (!($noefs)) then
 if (!($simulate)) then
 exec ./efs_gateway &
 else
 exec ./efs_gateway -s &
 endif
endif

where noefs and simulate are two flags passed from the xnirspec.sh command line. For
example, the command entry “xnirspec.sh -noefs” will start the NIRSPEC client program
without running EFS. Similarly, the switch “-s” indicates the simulation mode is activated.

 The socket server routines in efs_server.c are called by the EFS gateway program. For
example, EFS establishes the socket connection when it starts:

if ((efs_fd = EFS_serverOpen(20)) < 0)
 ERROR(("Aborted: failed to open socket connection to EFS.\n"));

 The client routines contained in the shareable object efs_client.so are called from IDL
programs using the CALL_EXTERNAL function. For example, the following IDL code opens a
socket client by calling EFSCom_open():

inp = strarr(2)
inp(0) = ' '
inp(1) = ' '
status = call_external('/kroot/kui/xnirspec/efs_client.so','EFSCom_open', $
 inp, n_elements(inp), /f_value)

The string array inp contains parameters to be passed to the called function EFSCom_open().
The CALL_EXTERNAL function call returns the value status. A zero value indicates a success

Printed November 28, 2012 7 NSPN0400

as defined in EFSCom_open(). The following IDL statements call the routine EFSCom_io() to
read the socket channel:

inp = strarr(2)
inp(0) = '0'
inp(1) = ' '
msg = call_external('/kroot/kui/xnirspec/efs_client.so','EFSCom_io', $
 inp, n_elements(inp), /s_value)

If inp(0) = ‘1’, a socket write will be performed by EFSCom_io().

