

Printed November 28, 2012 1 NSPN0300

══

 NIRSPEC
UCLA Astrophysics Program U.C. Berkeley W.M.Keck Observatory
══
Tim Liu March 7, 1997

 NIRSPEC Software Programming Note 03.00

Quick Look External Interface

1 Introduction

 The NIRSPEC quick look (QL) facility is programmed in IDL widgets, while the other parts
of the NIRSPEC high-level software system are coded in C. The QL must be able to communicate
with the GUI to pass messages. In order to interface the two different software sub-systems, a
communication scheme has been developed in the design note NSDN1200. This programming
document describes the implementation of the QL external interface design. In addition, program
building and execution are also discussed. As usual, the reader should consult the design note
NSDN1200 before reading this programming note.

2 Overview

 As discussed in the design note, the QL-GUI interface uses a UNIX socket and the IDL
CALL_EXTERNAL call mechanism to carry out a communication. The software interface consist
of two parts, a socket server and a socket client. The socket server contains interface routines for the
GUI, while the client software provides socket I/O routines that are called by IDL programs using
CALL_EXTERNAL.

 The QL external interface routines are in the two source modules ql_server.c and
ql_client.c. In addition, the low level socket functions used by the two source files are
contained in socket.c. This note will only describe routines in ql_server.c and
ql_client.c, because socket.c has been covered by NSPN0200 (Programming Note on
Command Line User Interface). No special user header files are used by the source modules except
for standard UNIX include files. We list these source modules below:

 ql_server.c - socket server routines used by the GUI
 ql_client.c - socket client routines invoked by IDL CALL_EXTERNAL calls
 socket.c - low-level socket routines

 These source modules along with the make file and compiled objects are located in the
NIRSPEC client software directory /kroot/kui/xnirspec.
3 Program Structure

Printed November 28, 2012 2 NSPN0300

3.1 ql_server.c

 The module ql_server.c contains the following three function routines that can be
called from the GUI program:

int QL_serverOpen(int timeout) - open a socket connection to QL
int QL_serverIO(int rw, char *msg) - perform a socket I/O
void QL_serverClose(void) - close socket connection

1. When the GUI program starts, it will call QL_serverOpen() to open a socket connection to
the QL. If the socket fails to open in timeout seconds, the routine will return -1, indicating a
failure.

 This server opening routine first gets the socket directory path from the environment variable
NIRSPEC_SOCKET_DIR which is defined in the NIRSPEC client software initialization file
NirspecClientInit located in the same directory:

if ((dir = (char *)getenv("NIRSPEC_SOCKET_DIR")) == NULL)
 return -1;
sprintf(socket_name, "%s/nirspec_ql_socket0", dir);

The routine then calls a socket opening routine in socket.c as follows:

if (socket_serverOpen(socket_name, timeout, &server_fd, &client_fd) < 0) {
 fprintf(stderr, "Error: timeout in opening quick-look socket.\n");
 return -1;
}

The two socket file descriptors server_fd and client_fd which are returned as function
arguments are static variables with a module-wide scope. Because client_fd also needs to be
accessed by routines outside ql_server.c, e.g., routines in ql_client.c, it is returned by
the function QL_serverOpen().

 By default, if an empty socket is read, the reading process will continue until data becomes
available in the socket. On the other hand, the QL side of the socket channel is polled by the QL
event loop using a CALL_EXTERNAL call for message flow. Apparently, the polling process will
hang up if the reading is blocked due to an empty socket. To prevent a reading process on the socket
client from being blocked, a UNIX file control system call is implemented as follows:

if (fcntl(client_fd, F_SETFL, O_NDELAY) == -1)
 fprintf(stderr, "Error: unable to unblock socket.\n");

Printed November 28, 2012 3 NSPN0300

This way, a socket read will return immediately if no message is available. Note that the fcntl()
system call requires the header file <fcntl.h> and the fcntl() call is not necessary for the GUI
side of the socket (server) because the GUI event loop is event-driven, not polling.

2. A socket I/O is invoked by the function QL_serverIO(). If the read/write flag rw is 0, a
socket read is performed using recv(). Otherwise, a socket write is executed by calling the low-
level socket routine socket_write(). The string *msg carries the socket message. The code
fragment is listed below:

if (rw == 0) {
 if (recv(client_fd, msg, sizeof(msg), 0) == -1) {
 fprintf(stderr, "Error: failed to receive message\n");
 return -1;
 }
}
else
 socket_write(client_fd, msg);

 The socket server on the GUI sends a single character to the QL socket client to signal a new
frame ready for display. This character is “S” if the frame is from the spectrometer, and “C” if it’s
from the slit-view camera. In addition, the character “Q” is used to notify the QL of program exit.

3. The last routine QL_serverClose() in the source module disconnects a socket connection by
closing the file descriptors client_fd and server_fd.

3.2 ql_client.c

 Like its server counterpart, the socket client source module ql_client.c also has three
routines which are listed and discussed below:

int QLCom_open(int argc, char *argv[]) - open a socket client
char *QLCom_io(int agrc, char *argv[]) - perform a socket I/O
void QLCom_close(int argc, char *argv[]) - close socket client

1. In fact, there are two socket connections to the QL, one from the GUI and the other from the
image rotator (IMROT) program. The second link is used to pass information from the QL to the
IMROT. The socket names are defined by two macros in the beginning of the source file:

#define NIRSPEC_SOCKET_NAME "/tmp/nirspec_ql_socket0"
#define IMROT_SOCKET_NAME "/tmp/imrot_ql_socket0"

In addition, a STRING structure is declared for passing an IDL string in the CALL_EXTERNAL
call:

Printed November 28, 2012 4 NSPN0300

typedef struct {
 unsigned short slen;
 short stype;
 char *s;
} STRING;

 IDL calls a routine in a shareable object using the C calling convention (argc,argv).
Any routines called by CALL_EXTERNAL should be defined with the following prototype :

 return_type function(int argc, void *argv[])

where argc is the count of optional parameters in the CALL_EXTERNAL call, argv is an array
of the parameters, and return_type is one of the data types which CALL_EXTERNAL may
return. The parameter array is passed by reference. This is done by placing a pointer to a STRING
structure as defined above in argv[i].

 QLCom_open() first casts the pointer in argv[] to local variables and places the IDL
string values into the local C string array string_array[]as follows:

str_descr = (STRING *) argv[0];
n_elements = (short) (*(long *) argv[1]);

for (i = 0; i < n_elements; i++, str_descr++)
 string_array[i] = strdup(str_descr->s);

This is also performed by the other two client routines QLCom_open() and QLCom_close(). If
the first parameter string_array[0] is “0”, a socket to the GUI is open with the socket file
descriptor fd[0]; otherwise, a socket to the IMROT is open with fd[1], as seen from the
following statements:

if (strcasecmp(string_array[0], "0") == 0) {
 if ((status = socket_clientOpen(NIRSPEC_SOCKET_NAME, &fd[0])) < 0)
 return status;
}
else {
 if ((status = socket_clientOpen(IMROT_SOCKET_NAME, &fd[1])) < 0)
 return status;
}

 As discusses before, the socket client is polled by the QL event loop for messages from the
server. Therefore, the following lines must be implemented to prevent the blocking of a socket
reading process:

if (fcntl(fd[0], F_SETFL, O_NDELAY) == -1) {

Printed November 28, 2012 5 NSPN0300

 fprintf(stderr, "Error: unable to unblock socket.\n");
 return -1;
}
if (fcntl(fd[1], F_SETFL, O_NDELAY) == -1) {
 fprintf(stderr, "Error: unable to unblock socket.\n");
 return -1;
}

 The routine QLCom_open() returns 0 if the socket open is a success.

2. QLCOm_io() executes a socket I/O and is straightforward in coding. If the first parameter
passed by the CALL_EXTERNAL call is “0”, a socket read will be performed on the GUI-QL link
and a character string will be returned by the function (a null string is return if the socket is empty).
If it’s “1”, the second parameter string_array[1] as passed from the IDL structure STRING
will be sent to the IMROT. This is shown from the following lines:

if (strcasecmp(string_array[0], "0") == 0)
 socket_read(fd[0], str);
else if (strcasecmp(string_array[0], "1") == 0)
 socket_write(fd[1], string_array[1]);

3. Finally, the routine QLCom_close() closes a socket connection. Similar to the other two
routines, a “0” in the passed parameter value indicates the socket link to the GUI. Otherwise, it’s the
socket to the IMROT.

4 Program Building

 The NIRSPEC client software in the directory /kroot/kui/xnirspec is built with the
make file makefile located in the same directory. Since the socket server routines in
ql_server.c are called by the GUI program, they are compiled along with other GUI source
modules as shown below:

INCLUDE = /usr/local/dv/include
CC = cc
CFLAGS = -g -I$(INCLUDE) -I$(KROOT)/rel/default/include

NAMES = xnirspec dataviews create_interest callbacks misc \
 cli_server ql_server dcs_util socket
SOURCE = $(NAMES:%=%.c)
OBJECT = $(NAMES:%=%.o)
LIBS = -L$(KROOT)/rel/default/lib -lktl -lktlker -lkcl -ldl -lXm -lucb

TARGET = xnirspec cnirspec ql_client.so efs_gateway efs_client.so
all: $(TARGET)

Build GUI application

Printed November 28, 2012 6 NSPN0300

xnirspec: $(OBJECT)
 DVlink -o xnirspec $(OBJECT) $(LIBS)

where DVlink is a DataViews link script for building DVtools-based X-window applications as the
NIRSPEC GUI program xnirspec.

 However, the socket client routines must be compiled as a shareable object library in order
for the IDL function CALL_EXTERNAL to call. This is done by the following lines:

Build QL socket client sharable library for IDL
ql_client.so: ql_client.o
 ld -G -o $@ ql_client.o socket.o

The built shareable object ql_client.so resides in the source directory.

5 Program Execution

 The socket server routines are invoked with function calls. For instance, the GUI-QL socket
connection is established in the GUI main program as follows:

if ((ql_fd = QL_serverOpen(20)) < 0)
 ERROR(("Aborted: failed to open socket connection to quick-look.\n"));

Note that a 20-second time-out is set for a connection try.

 The client routines contained in the shareable object ql_client.so are called from IDL
programs using the CALL_EXTERNAL function. For instance, the following IDL code makes a
call to QLCom_open() to open a socket client for the GUI-QL link:

inp = strarr(2)
inp(0) = '0'
inp(1) = ' '
status = call_external('/kroot/kui/xnirspec/ql_client.so','QLCom_open', $
 inp, n_elements(inp), /f_value)

The string array inp contains parameters to be passed to the called function QLCom_open().
Only the first element in the array is used here, however. As discussed before, the first parameter
determines which socket to open because the QL opens two different socket connections when the
NIRSPEC program starts. The CALL_EXTERNAL call returns the floating point value status. A
zero value indicates a success as defined in QLCom_open().

 Similarly, the following IDL statements call the routine QLCom_io() to read the GUI-QL
socket for an incoming message. For example, if the character string msg is ‘S’, a new image frame
from the spectrometer has arrived in the host computer and is ready for the QL to display.

Printed November 28, 2012 7 NSPN0300

inp = strarr(2)
inp(0) = '0'
inp(1) = ' '
msg = call_external('/kroot/kui/xnirspec/ql_client.so','QLCom_io', $
 inp, n_elements(inp), /s_value)

