

Printed November 28, 2012 1 NSPN0201

══

 NIRSPEC
UCLA Astrophysics Program U.C. Berkeley W.M.Keck Observatory
══
Tim Liu May 15, 1997
Modified by James Larkin March 20, 1999

 NIRSPEC Software Programming Note 02.01

Graphical User Interface

1 Introduction

 This programming document describes the implementation of the NIRSPEC Graphical
User Interface (GUI). The GUI is a DataViews-based X application. A quick guide to learning
DataViews is included in the GUI design note NSDN0501.

2 Overview

 All the GUI source code is located in the directory /kroot/kui/xnirspec. In
addition, the DataViews .v view files are located in /kroot/kui/xnirspec/views, the
.lay layout files in /kroot/kui/xnirspec/layouts, and .dr drawing files in
/kroot/kui/xnirspec/drawings.

 The GUI source modules are listed as follows:

xnirspec.c - main program
dataviews.c - routines to handle X display using DataViews
create_interest.c - routines to create keyword interest for broadcast
callbacks.c - callbacks for keyword broadcast
misc.c - miscellaneous routines

xnirspec.h - NIRSPEC client definitions
dataviews.h - DataViews definitions
nirspec.h - NIRSPEC server definitions

3 Program Description

3.1 header files

Printed November 28, 2012 2 NSPN0201

 The header file xnirspec.h defines various macros and declares program variables as
memory buffers to hold the DataViews variable descriptors. Several data structures are also
defined, along with public function prototyping.

 The header file dataviews.h defines data structures for DataViews displays, menus
and pop-ups.

3.2 xnirspec.c:

 The module xnirspec.c contains main() of the GUI program. Besides several
standard header files, it includes "xnirspec.h" and the generic KTL definition header file
"ktl.h". A few global variables are declared which can be accessed by other source modules
as external variables:

int Simulate = FALSE; /* simulation mode flag */
int NoDCS = FALSE; /* no DCS server running flag */
int Quit = FALSE; /* program quit flag */
int ServerOnHost = FALSE; /* flag indicating server is on the host */
KTL_HANDLE *khand; /* handle to the NIRSPEC keyword library */
KTL_HANDLE *dcs_khand; /* handle to the DCS keyword library */

 main() has the following program control flow and structure:

 Check arguments
 Disable Ctrl-C
 Check whether client and server on the same machine
 Set up error logging
 Make connection to NIRSPEC keyword library
 Create keyword broadcast interest list
 Make connection to DCS keyword library if specified (normally not).
 Initialize global variables
 Initialize X displays
 Loop to process X, and KTL events

 Create a fd set consisting of X socket and KTL fd
 Block until an X, or KTL event arrives
 Handle events

 Close X displays
 Close connection to DCS keyword library
 Close connection to NIRSPEC keyword library

 Some explanations are given below:

Printed November 28, 2012 3 NSPN0201

1. The function main() accepts up to three command line arguments. They can be "-s", "-
nodcs" and "-noql".

2. Ctrl-C is disabled to prevent abnormal exit of the program.

3. The flag ServerOnHost indicates whether the client is running on the same machine as the
NIRSPEC server program. If it's FALSE, a remote data transfer may be required for the quick-
look display.

4. The message logging is performed by the Unix syslog() function.

5. Depending upon the value of the flag Simulate which is set by the argument "-s" in
main(), the program connects to either the real instrument server or the simulation mode
server.

6. The function init_globalvars() in misc.c is called to set various program flags and
initialize variables by reading keyword values from the server.

7. The CLI program is no longer run.

8. DV_init() from dataviews.c initialize DataViews displays. The X socket file
descriptor x_fd is returned from the macro ConnectionNumber() for the asynchronous I/O
in the event loop.

9. A socket connection is opened between the GUI and quick-look to pass information like frame
arrival.

10. The core of main() is the event loop to process events from the KTL RPC server and events
from the X socket, CLI socket and quick-look socket. Because the program must be able to handle
several different file I/O sources, an asynchronous I/O multiplexing scheme is implemented for the
event loop using the UNIX select() function call. select() examines an I/O file descriptor
sets to see if any of the file descriptors are ready for reading, writing, or have an exceptional
condition. A fd set consisting of various fds is created in the beginning of the loop as follows:

FD_ZERO(&readfds);
ktl_ioctl(khand, KTL_FDSET, &readfds);
FD_SET(x_fd, &readfds);
FD_SET(cli_fd, &readfds);
FD_SET(ql_fd, &readfds);

Printed November 28, 2012 4 NSPN0201

The macro FD_ZERO() initializes a file descriptor set to the null set. Note that because the KTL
call ktl_ioctl(,KTL_FDSET,,) automatically clears a fd set, it must be placed before the
macro FD_SET().

The next code segment in the event loop is to block the process indefinitely until an event arrives:

if ((select(maxfds, &readfds, NULL, NULL, NULL) == -1) &&
 errno != EINTR)) {
 syslog(LOG_WARNING, "select() failed.");
}
else {
 if (FD_ISSET(x_fd, &readfds) ||
 FD_ISSET(ql_fd, &readfds)) {
 /*
 * Handle X events
 */
 if (FD_ISSET(x_fd, &readfds))
 DV_handle();
}
 /*
 * Invoke KTL event handler
 */
 else
 KTL_DISPATCH(khand);
}

select() returns if any of the fds is ready for reading. The program calls the macro
FD_ISSET() to determine which fd is ready, and then invokes a specific function routine to
perform the request operation.

11. When main() exits, RPC and socket connections are closed by clean-up routines.

3.3 dataviews.c:

 The routines in dataviews.c handle DataViews displays. They can be divided into
different groups in terms of functions they perform as listed below:

High-level routines:

DV_init() - initialize DataViews
DV_handle() - handle DataViews events
DV_close() - close DataViews displays
DV_updateScreen() - update display screen
DV_updateCurrentObs()- update current observing parameters
DV_expStatus() - update exposure status display

Printed November 28, 2012 5 NSPN0201

Routines to perform initialization:

create_screen() - create a window and load the view to be displayed
drawport_init() - load the view, get the objects and the variables, and create a
 drawport to be used
drawport_new() - load a view, create a new drawport and display.
vdps_init() - initialize variable descriptors
vdps_rebind() - modify the variable descriptor to use our own program variable
as the memory buffer
input_objects_init()- initialize input object components and post service result request

Routines to display pop-ups:

popup_draw() - add a popup to the active drawport's view
popup_delete() - delete popup objects from the view
popup_deleteAll() - delete all popup objects from the view

Routines to display sub-views:

subview_load() - load the dialog view, get the interesting objects and create a
 drawport
subview_draw() - draw subview and handle events
subview_erase() - Erase the subview and repair any damage to other views caused
 by the erasure

Routines to display dialog boxes:

get_automsg() - display message
get_message() - display a single line message
get_mmessage() - display multiple line message
get_confirm() - get confirmation
get_input() - get an input value

DataViews event callback routines:

menu_inst_setup_callback()
......

Printed November 28, 2012 6 NSPN0201

 The high-level routines provide a DataViews interface layer to NIRSPEC application
routines. The routines DV_init(), DV_handle() and DV_close() are briefly discussed
below:

Display *DV_init(void):

This initialization routine performs the following functions:

 Initialize DV-Tools
 Initialize the real-time name:data look up table
 Make entries for the name buffer pairs defined in data_table
 Initialize variable descriptors
 Initialize display
 Initialize input objects
 Initialize all dialog subviews
 Extract environment variable values
 Get exposure status objects for exposure update

void DV_handle(void):
This routine consists of an event loop to handle various X events as shown below:

 /*
 * Poll event queue for locator events
 */
 while (location = VOloWinEventPoll(V_NO_WAIT)) {
 current_drawport = TloGetSelectedDrawport(location);
 current_screen = VOloScreen(location);

 VUerHandleLocEvent(location);

 /*
 * Return event types
 */
 switch (VOloType(location)) {
 case V_RESIZE:
 TscReset(current_screen);
 break;

 case V_EXPOSE:
 TscRedraw(current_screen, VOloRegion(location));
 break;

 case V_KEYPRESS:
 break;

 case V_BUTTONPRESS:
 handle_button_press(location);
 break;

Printed November 28, 2012 7 NSPN0201

 case V_BUTTONRELEASE:
 break;

 default:
 break;
 }

For example, a button press will invoke handle_button_press() to perform
certain function. The loop updates observing setup parameters by calling
update_obsparam(). The graphic displays are updated by TdpDrawNext() at the
end of each loop.

void DV_close(void):

This routine is rather simple. It destroys each view and drawport and closes each screen.
It then frees the data table of "name:buffer" pairs. That source code is listed below:

 for (i = 0; i < NUM_WINS; i++) {
 TdpDestroy(dv_drawport[i]);
 TviDestroy(dv_view[i]);
 TscClose(dv_screen[i]);
 }

 table = data_symbol_table;
 while (VTstlen(table) > 0) {
 node = VTstsnget(table, 0);
 varname = VTsnkey(node);
 S_FREE(varname);
 VTstsnremove(table, node);
 }
 VTstdestroy(data_symbol_table);

 TTerminate();

3.4 create_interest.c and callbacks.c:

 When the GUI receives a keyword sent from the NIRSPEC server via broadcast, a user-
defined callback function will be invoked by KTL_DISPATCH() to perform certain function.
Whether the program should respond to a NIRSPEC keyword broadcast from the server is defined
by create_nirspec_interest() in create_interest.c using the defined macro
EXPRESS_INTEREST:

#define EXPRESS_INTEREST(keyword, keyword_callback) \
 context.callback = (int(*)()) keyword_callback; \
 if (ktl_read(khand,KTL_CONTINUOUS|KTL_NOPRIME,keyword,0,0,&context)<0) { \
 fprintf(stderr, "xnirspec: %s\n", ktl_get_errtxt()); \
 exit(-1); \
 }

Printed November 28, 2012 8 NSPN0201

For example, EXPRESS_INTEREST("outdir",outdir_callback) will allow the
broadcast of the keyword “outdir” to invoke a callback function.

A callback routine performs a user-defined function when a keyword broadcast happens. The
follow is the callback function for the keyword “outdir”:

void outdir_callback(keyword, user_data, call_data, context)
char *keyword; /* keyword */
void *user_data; /* unused */
KTL_POLYMORPH *call_data; /* contains new value */
KTL_CONTEXT *context; /* command context (unused) */
{
 strcpy(VdpBuf_datapath[0], call_data->s);
 strcpy(ObsSetup[0].datapath, call_data->s);
 DV_updateScreen(SCREEN_SPEC);
}

As can be seen, this callback copies the new outdir value to a display variable and updates the
DataViews display.

3.5 misc.c:

 misc.c contains miscellaneous functions which include routines to control exposures,
routines to make a file name, routines to manipulate instrument configuration file, and other
routines. They are listed below:

exp_start() - start an exposure
exp_abort() - abort an exposure
exp_end() - finish an exposure
exp_done() - finish an exposure and notify quick-look display
exp_updateStatus() - update exposure status
write_obsParam() - write observing parameters using ktl_write()
write_abort() - write the "abort" keyword
Filename_get() - get the current image file name
Filename_make() - make an image file name by incrementing file number
config_save() - save instrument configuration file
config_read() - read configuration file and re-configure instrument
init_globalvars() - initialize global variables
get_hostname() - get the host domain name

